|
from diffusers import DiffusionPipeline, AutoencoderKL |
|
from transformers import T5EncoderModel |
|
import torch |
|
import gc |
|
from PIL import Image |
|
from pipelines.models import TextToImageRequest |
|
import os |
|
from torch import Generator |
|
|
|
Pipeline = None |
|
|
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" |
|
|
|
ckpt_id = "black-forest-labs/FLUX.1-schnell" |
|
|
|
def load_pipeline() -> Pipeline: |
|
gc.collect() |
|
|
|
|
|
dtype = torch.bfloat16 |
|
text_encoder_2 = T5EncoderModel.from_pretrained( |
|
"city96/t5-v1_1-xxl-encoder-bf16", torch_dtype=dtype |
|
).to(memory_format=torch.channels_last) |
|
vae = AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=dtype).to(memory_format=torch.channels_last) |
|
|
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
ckpt_id, |
|
vae=vae, |
|
text_encoder_2=text_encoder_2, |
|
torch_dtype=dtype, |
|
) |
|
pipeline.transformer.to(memory_format=torch.channels_last) |
|
|
|
|
|
|
|
|
|
pipeline.vae = torch.compile(pipeline.vae) |
|
|
|
|
|
pipeline._exclude_from_cpu_offload = ["vae"] |
|
pipeline.enable_sequential_cpu_offload() |
|
|
|
|
|
for _ in range(2): |
|
pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256) |
|
|
|
return pipeline |
|
|
|
|
|
|
|
@torch.inference_mode() |
|
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image: |
|
torch.cuda.reset_peak_memory_stats() |
|
generator = Generator("cuda").manual_seed(request.seed) |
|
image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0] |
|
return(image) |