perfbench7test / src /pipeline.py
manbeast3b's picture
Update src/pipeline.py
60d5f94 verified
from diffusers import DiffusionPipeline, AutoencoderKL
from transformers import T5EncoderModel
import torch
import gc
from PIL import Image
from pipelines.models import TextToImageRequest # Assuming this defines your request object
import os
from torch import Generator
Pipeline = None
# Consistent environment variable setting
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" # More robust memory management
ckpt_id = "black-forest-labs/FLUX.1-schnell"
def load_pipeline() -> Pipeline:
gc.collect()
# torch.cuda.empty_cache()
dtype = torch.bfloat16
text_encoder_2 = T5EncoderModel.from_pretrained(
"city96/t5-v1_1-xxl-encoder-bf16", torch_dtype=dtype
).to(memory_format=torch.channels_last)
vae = AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=dtype).to(memory_format=torch.channels_last)
pipeline = DiffusionPipeline.from_pretrained(
ckpt_id,
vae=vae,
text_encoder_2=text_encoder_2,
torch_dtype=dtype,
)#.to("cuda")
pipeline.transformer.to(memory_format=torch.channels_last)
# pipeline.text_encoder.to(memory_format=torch.channels_last)
# Optimize after moving to GPU
pipeline.vae = torch.compile(pipeline.vae) # compile after moving to device
# It's unclear if offloading helped in the originals. Test with and without!
pipeline._exclude_from_cpu_offload = ["vae"]
pipeline.enable_sequential_cpu_offload()
# Warmup on GPU
for _ in range(2):
pipeline(prompt="onomancy, aftergo, spirantic, Platyhelmia, modificator, drupaceous, jobbernowl, hereness", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
return pipeline
@torch.inference_mode()
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image:
torch.cuda.reset_peak_memory_stats()
generator = Generator("cuda").manual_seed(request.seed)
image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0]
return(image)