File size: 3,072 Bytes
dd6a86f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import torch
from PIL.Image import Image
from diffusers import StableDiffusionXLPipeline

from pipelines.models import TextToImageRequest
from diffusers import DDIMScheduler
from torch import Generator
from loss import SchedulerWrapper

from onediffx import compile_pipe, save_pipe, load_pipe

def callback_dynamic_cfg(pipe, step_index, timestep, callback_kwargs):
  if step_index == int(pipe.num_timesteps * 0.77):
    callback_kwargs['prompt_embeds'] = callback_kwargs['prompt_embeds'].chunk(2)[-1]
    callback_kwargs['add_text_embeds'] = callback_kwargs['add_text_embeds'].chunk(2)[-1]
    callback_kwargs['add_time_ids'] = callback_kwargs['add_time_ids'].chunk(2)[-1]
    pipe._guidance_scale = 0.1

  return callback_kwargs

def load_pipeline(pipeline=None) -> StableDiffusionXLPipeline:
    if not pipeline:
        pipeline = StableDiffusionXLPipeline.from_pretrained(
            "stablediffusionapi/newdream-sdxl-20",
            torch_dtype=torch.float16,
        ).to("cuda")

    # Prune the individual models
    for name, module in pipeline.text_encoder.named_modules():
      if isinstance(module, torch.nn.Linear):
          prune.l1_unstructured(module, 'weight', amount=0.2)
    for name, module in pipeline.unet.named_modules():
      if isinstance(module, torch.nn.Linear):
          prune.l1_unstructured(module, 'weight', amount=0.2)
    for name, module in pipeline.vae.named_modules():
      if isinstance(module, torch.nn.Linear):
          prune.l1_unstructured(module, 'weight', amount=0.2)


    pipeline.scheduler = SchedulerWrapper(DDIMScheduler.from_config(pipeline.scheduler.config))

    pipeline = compile_pipe(pipeline)
    load_pipe(pipeline, dir="/home/sandbox/.cache/huggingface/hub/models--RobertML--cached-pipe-02/snapshots/58d70deae87034cce351b780b48841f9746d4ad7")

    for _ in range(2):
        deepcache_output = pipeline(prompt="telestereography, unstrengthen, preadministrator, copatroness, hyperpersonal, paramountness, paranoid, guaniferous", output_type="pil", num_inference_steps=20)
    pipeline.scheduler.prepare_loss()
    for _ in range(4):
        pipeline(prompt="telestereography, unstrengthen, preadministrator, copatroness, hyperpersonal, paramountness, paranoid, guaniferous", output_type="pil", num_inference_steps=20)
    return pipeline

def infer(request: TextToImageRequest, pipeline: StableDiffusionXLPipeline) -> Image:
    if request.seed is None:
        generator = None
    else:
        generator = Generator(pipeline.device).manual_seed(request.seed)

    return pipeline(
        prompt=request.prompt,
        negative_prompt=request.negative_prompt,
        width=request.width,
        height=request.height,
        generator=generator,
        num_inference_steps=13,
        cache_interval=1,
        cache_layer_id=1,
        cache_block_id=0,
        eta=1.0,
        guidance_scale = 3.0,
        guidance_rescale = 0.0,
        callback_on_step_end=callback_dynamic_cfg,
        callback_on_step_end_tensor_inputs=['prompt_embeds', 'add_text_embeds', 'add_time_ids'],
    ).images[0]