|
|
|
|
|
|
|
import numpy as np |
|
import cv2 |
|
import torch |
|
import random |
|
from PIL import Image, ImageDraw, ImageFont |
|
import copy |
|
from typing import Optional, Union, Tuple, List, Callable, Dict, Any |
|
from tqdm.notebook import tqdm |
|
from diffusers.utils import BaseOutput, logging |
|
from diffusers.models.embeddings import TimestepEmbedding, Timesteps |
|
from diffusers.models.unet_2d_blocks import ( |
|
CrossAttnDownBlock2D, |
|
CrossAttnUpBlock2D, |
|
DownBlock2D, |
|
UNetMidBlock2DCrossAttn, |
|
UpBlock2D, |
|
get_down_block, |
|
get_up_block, |
|
) |
|
from diffusers.models.unet_2d_condition import UNet2DConditionOutput |
|
from copy import deepcopy |
|
import json |
|
|
|
import inspect |
|
import os |
|
import warnings |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils.torch_utils import is_compiled_module |
|
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel |
|
from tqdm import tqdm |
|
from controlnet_aux import HEDdetector, OpenposeDetector |
|
import time |
|
|
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from diffusers.models.embeddings import ( |
|
GaussianFourierProjection, |
|
ImageHintTimeEmbedding, |
|
ImageProjection, |
|
ImageTimeEmbedding, |
|
PositionNet, |
|
TextImageProjection, |
|
TextImageTimeEmbedding, |
|
TextTimeEmbedding, |
|
TimestepEmbedding, |
|
Timesteps, |
|
) |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.unet_2d_blocks import ( |
|
UNetMidBlock2D, |
|
UNetMidBlock2DCrossAttn, |
|
UNetMidBlock2DSimpleCrossAttn, |
|
get_down_block, |
|
get_up_block, |
|
) |
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import ( |
|
FromSingleFileMixin, |
|
IPAdapterMixin, |
|
StableDiffusionXLLoraLoaderMixin, |
|
TextualInversionLoaderMixin, |
|
) |
|
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel |
|
from diffusers.models.attention_processor import ( |
|
AttnProcessor2_0, |
|
FusedAttnProcessor2_0, |
|
XFormersAttnProcessor, |
|
) |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
deprecate, |
|
is_invisible_watermark_available, |
|
is_torch_xla_available, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput |
|
|
|
from typing import Any, Dict, List |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import CONFIG_NAME |
|
|
|
|
|
class PipelineCallback(ConfigMixin): |
|
|
|
config_name = CONFIG_NAME |
|
|
|
@register_to_config |
|
def __init__(self, cutoff_step_ratio=1.0, cutoff_step_index=None): |
|
super().__init__() |
|
|
|
if (cutoff_step_ratio is None and cutoff_step_index is None) or ( |
|
cutoff_step_ratio is not None and cutoff_step_index is not None |
|
): |
|
raise ValueError("Either cutoff_step_ratio or cutoff_step_index should be provided, not both or none.") |
|
|
|
if cutoff_step_ratio is not None and ( |
|
not isinstance(cutoff_step_ratio, float) or not (0.0 <= cutoff_step_ratio <= 1.0) |
|
): |
|
raise ValueError("cutoff_step_ratio must be a float between 0.0 and 1.0.") |
|
|
|
@property |
|
def tensor_inputs(self) -> List[str]: |
|
raise NotImplementedError(f"You need to set the attribute `tensor_inputs` for {self.__class__}") |
|
|
|
def callback_fn(self, pipeline, step_index, timesteps, callback_kwargs) -> Dict[str, Any]: |
|
raise NotImplementedError(f"You need to implement the method `callback_fn` for {self.__class__}") |
|
|
|
def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: |
|
return self.callback_fn(pipeline, step_index, timestep, callback_kwargs) |
|
|
|
|
|
class MultiPipelineCallbacks: |
|
|
|
def __init__(self, callbacks: List[PipelineCallback]): |
|
self.callbacks = callbacks |
|
|
|
@property |
|
def tensor_inputs(self) -> List[str]: |
|
return [input for callback in self.callbacks for input in callback.tensor_inputs] |
|
|
|
def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]: |
|
""" |
|
Calls all the callbacks in order with the given arguments and returns the final callback_kwargs. |
|
""" |
|
for callback in self.callbacks: |
|
callback_kwargs = callback(pipeline, step_index, timestep, callback_kwargs) |
|
|
|
return callback_kwargs |
|
|
|
def seed_everything(seed): |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
|
|
def get_promptls(prompt_path): |
|
with open(prompt_path) as f: |
|
prompt_ls = json.load(f) |
|
prompt_ls = [prompt['caption'].replace('/','_') for prompt in prompt_ls] |
|
return prompt_ls |
|
|
|
def warpped_feature(sample, step): |
|
""" |
|
sample: batch_size*dim*h*w, uncond: 0 - batch_size//2, cond: batch_size//2 - batch_size |
|
step: timestep span |
|
""" |
|
bs, dim, h, w = sample.shape |
|
uncond_fea, cond_fea = sample.chunk(2) |
|
uncond_fea = uncond_fea.repeat(step,1,1,1) |
|
cond_fea = cond_fea.repeat(step,1,1,1) |
|
return torch.cat([uncond_fea, cond_fea]) |
|
|
|
def warpped_skip_feature(block_samples, step): |
|
down_block_res_samples = [] |
|
for sample in block_samples: |
|
sample_expand = warpped_feature(sample, step) |
|
down_block_res_samples.append(sample_expand) |
|
return tuple(down_block_res_samples) |
|
|
|
def warpped_text_emb(text_emb, step): |
|
""" |
|
text_emb: batch_size*77*768, uncond: 0 - batch_size//2, cond: batch_size//2 - batch_size |
|
step: timestep span |
|
""" |
|
bs, token_len, dim = text_emb.shape |
|
uncond_fea, cond_fea = text_emb.chunk(2) |
|
uncond_fea = uncond_fea.repeat(step,1,1) |
|
cond_fea = cond_fea.repeat(step,1,1) |
|
return torch.cat([uncond_fea, cond_fea]) |
|
|
|
def warpped_timestep(timesteps, bs): |
|
""" |
|
timestpes: list, such as [981, 961, 941] |
|
""" |
|
semi_bs = bs//2 |
|
ts = [] |
|
for timestep in timesteps: |
|
timestep = timestep[None] |
|
texp = timestep.expand(semi_bs) |
|
ts.append(texp) |
|
timesteps = torch.cat(ts) |
|
return timesteps.repeat(2,1).reshape(-1) |
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
""" |
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 |
|
""" |
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
return noise_cfg |
|
|
|
def register_normal_pipeline(pipe): |
|
def new_call(self): |
|
@torch.no_grad() |
|
def call( |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._guidance_rescale = guidance_rescale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
self._num_timesteps = len(timesteps) |
|
init_latents = latents.detach().clone() |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if t/1000 < 0.5: |
|
latents = latents + 0.003*init_latents |
|
setattr(self.unet, 'order', i) |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
print("latent_model_input ", latent_model_input.shape) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ |
|
0 |
|
] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
return call |
|
pipe.call = new_call(pipe) |
|
|
|
|
|
|
|
def register_very_orig_pipeline(pipe): |
|
def new_call(self): |
|
@torch.no_grad() |
|
def call( |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
sigmas: List[float] = None, |
|
denoising_end: Optional[float] = None, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
original_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Optional[Tuple[int, int]] = None, |
|
negative_original_size: Optional[Tuple[int, int]] = None, |
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
negative_target_size: Optional[Tuple[int, int]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[ |
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] |
|
] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in |
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed |
|
will be used. |
|
denoising_end (`float`, *optional*): |
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be |
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will |
|
still retain a substantial amount of noise as determined by the discrete timesteps selected by the |
|
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a |
|
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image |
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) |
|
guidance_scale (`float`, *optional*, defaults to 5.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should |
|
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead |
|
of a plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
guidance_rescale (`float`, *optional*, defaults to 0.0): |
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of |
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). |
|
Guidance rescale factor should fix overexposure when using zero terminal SNR. |
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. |
|
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as |
|
explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position |
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting |
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If |
|
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in |
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a specific image resolution. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a target image resolution. It should be as same |
|
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): |
|
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of |
|
each denoising step during the inference. with the following arguments: `callback_on_step_end(self: |
|
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a |
|
list of all tensors as specified by `callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._guidance_rescale = guidance_rescale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
self._denoising_end = denoising_end |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
lora_scale=lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, num_inference_steps, device, timesteps, sigmas |
|
) |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
add_text_embeds = pooled_prompt_embeds |
|
if self.text_encoder_2 is None: |
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) |
|
else: |
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim |
|
|
|
add_time_ids = self._get_add_time_ids( |
|
original_size, |
|
crops_coords_top_left, |
|
target_size, |
|
dtype=prompt_embeds.dtype, |
|
text_encoder_projection_dim=text_encoder_projection_dim, |
|
) |
|
if negative_original_size is not None and negative_target_size is not None: |
|
negative_add_time_ids = self._get_add_time_ids( |
|
negative_original_size, |
|
negative_crops_coords_top_left, |
|
negative_target_size, |
|
dtype=prompt_embeds.dtype, |
|
text_encoder_projection_dim=text_encoder_projection_dim, |
|
) |
|
else: |
|
negative_add_time_ids = add_time_ids |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) |
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
add_text_embeds = add_text_embeds.to(device) |
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
|
|
if ( |
|
self.denoising_end is not None |
|
and isinstance(self.denoising_end, float) |
|
and self.denoising_end > 0 |
|
and self.denoising_end < 1 |
|
): |
|
discrete_timestep_cutoff = int( |
|
round( |
|
self.scheduler.config.num_train_timesteps |
|
- (self.denoising_end * self.scheduler.config.num_train_timesteps) |
|
) |
|
) |
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) |
|
timesteps = timesteps[:num_inference_steps] |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
self._num_timesteps = len(timesteps) |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
added_cond_kwargs["image_embeds"] = image_embeds |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) |
|
negative_pooled_prompt_embeds = callback_outputs.pop( |
|
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds |
|
) |
|
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) |
|
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
if not output_type == "latent": |
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
|
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
elif latents.dtype != self.vae.dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
self.vae = self.vae.to(latents.dtype) |
|
|
|
|
|
|
|
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None |
|
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None |
|
if has_latents_mean and has_latents_std: |
|
latents_mean = ( |
|
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) |
|
) |
|
latents_std = ( |
|
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) |
|
) |
|
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean |
|
else: |
|
latents = latents / self.vae.config.scaling_factor |
|
|
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
else: |
|
image = latents |
|
|
|
if not output_type == "latent": |
|
|
|
if self.watermark is not None: |
|
image = self.watermark.apply_watermark(image) |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return StableDiffusionXLPipelineOutput(images=image) |
|
return call |
|
pipe.call = new_call(pipe) |
|
|
|
|
|
def register_parallel_pipeline_orig(pipe, mod='50ls'): |
|
def new_call(self): |
|
@torch.no_grad() |
|
def call( |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
sigmas: List[float] = None, |
|
denoising_end: Optional[float] = None, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
original_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Optional[Tuple[int, int]] = None, |
|
negative_original_size: Optional[Tuple[int, int]] = None, |
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
negative_target_size: Optional[Tuple[int, int]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[ |
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] |
|
] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._guidance_rescale = guidance_rescale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
self._denoising_end = denoising_end |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
lora_scale=lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) |
|
|
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
init_latents = latents.detach().clone() |
|
all_steps = len(self.scheduler.timesteps) |
|
curr_step = 0 |
|
if mod == '50ls': |
|
cond = lambda timestep: timestep in [0, 1, 2, 3, 5, 10, 15, 25, 35] |
|
elif isinstance(mod, int): |
|
cond = lambda timestep: timestep % mod == 0 |
|
else: |
|
raise Exception("Currently not supported, But you can modify the code to customize the keytime") |
|
|
|
|
|
add_time_ids = self._get_add_time_ids( |
|
original_size, |
|
crops_coords_top_left, |
|
target_size, |
|
dtype=prompt_embeds.dtype, |
|
text_encoder_projection_dim=pooled_prompt_embeds.shape[-1] if self.text_encoder_2 is None else self.text_encoder_2.config.projection_dim, |
|
) |
|
if negative_original_size is not None and negative_target_size is not None: |
|
negative_add_time_ids = self._get_add_time_ids( |
|
negative_original_size, |
|
negative_crops_coords_top_left, |
|
negative_target_size, |
|
dtype=prompt_embeds.dtype, |
|
text_encoder_projection_dim=pooled_prompt_embeds.shape[-1] if self.text_encoder_2 is None else self.text_encoder_2.config.projection_dim, |
|
) |
|
else: |
|
negative_add_time_ids = add_time_ids |
|
|
|
if self.do_classifier_free_guidance: |
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) |
|
|
|
add_text_embeds = pooled_prompt_embeds.to(device) |
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
|
|
while curr_step < all_steps: |
|
register_time(self.unet, curr_step) |
|
time_ls = [timesteps[curr_step]] |
|
curr_step += 1 |
|
while not cond(curr_step) and curr_step < all_steps: |
|
time_ls.append(timesteps[curr_step]) |
|
curr_step += 1 |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
) |
|
added_cond_kwargs["image_embeds"] = image_embeds |
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
time_ls, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: |
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) |
|
|
|
bs = noise_pred.shape[0] |
|
bs_perstep = bs // len(time_ls) |
|
denoised_latent = latents |
|
for i, timestep in enumerate(time_ls): |
|
if timestep / 1000 < 0.5: |
|
denoised_latent = denoised_latent + 0.003 * init_latents |
|
curr_noise = noise_pred[i * bs_perstep : (i + 1) * bs_perstep] |
|
denoised_latent = self.scheduler.step( |
|
curr_noise, timestep, denoised_latent, **extra_step_kwargs, return_dict=False |
|
)[0] |
|
latents = denoised_latent |
|
|
|
|
|
if not output_type == "latent": |
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
elif latents.dtype != self.vae.dtype: |
|
if torch.backends.mps.is_available(): |
|
self.vae = self.vae.to(latents.dtype) |
|
|
|
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None |
|
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None |
|
if has_latents_mean and has_latents_std: |
|
latents_mean = ( |
|
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) |
|
) |
|
latents_std = ( |
|
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) |
|
) |
|
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean |
|
else: |
|
latents = latents / self.vae.config.scaling_factor |
|
|
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
else: |
|
image = latents |
|
|
|
if not output_type == "latent": |
|
if self.watermark is not None: |
|
image = self.watermark.apply_watermark(image) |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|
|
return call |
|
|
|
pipe.call = new_call(pipe) |
|
|
|
def register_parallel_pipeline(pipe, mod = '50ls'): |
|
def new_call(self): |
|
@torch.no_grad() |
|
def call( |
|
prompt: Union[str, List[str]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._guidance_rescale = guidance_rescale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
self._num_timesteps = len(timesteps) |
|
init_latents = latents.detach().clone() |
|
|
|
all_steps = len(self.scheduler.timesteps) |
|
curr_step = 0 |
|
if mod == '50ls': |
|
cond = lambda timestep: timestep in [0,1,2,3,5,10,15,25,35] |
|
elif isinstance(mod, int): |
|
cond = lambda timestep: timestep % mod ==0 |
|
else: |
|
raise Exception("Currently not supported, But you can modify the code to customize the keytime") |
|
while curr_step<all_steps: |
|
register_time(self.unet, curr_step) |
|
time_ls = [self.scheduler.timesteps[curr_step]] |
|
curr_step += 1 |
|
while not cond(curr_step): |
|
if curr_step<all_steps: |
|
time_ls.append(self.scheduler.timesteps[curr_step]) |
|
curr_step += 1 |
|
else: |
|
break |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
time_ls, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) |
|
|
|
|
|
bs = noise_pred.shape[0] |
|
bs_perstep = bs//len(time_ls) |
|
|
|
denoised_latent = latents |
|
for i, timestep in enumerate(time_ls): |
|
if timestep/1000 < 0.5: |
|
denoised_latent = denoised_latent + 0.003*init_latents |
|
curr_noise = noise_pred[i*bs_perstep:(i+1)*bs_perstep] |
|
denoised_latent = self.scheduler.step(curr_noise, timestep, denoised_latent, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
latents = denoised_latent |
|
|
|
|
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ |
|
0 |
|
] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
return call |
|
pipe.call = new_call(pipe) |
|
|
|
def register_faster_forward(model, mod = '50ls'): |
|
def faster_forward(self): |
|
def forward( |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
mid_block_additional_residual: Optional[torch.Tensor] = None, |
|
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
return_dict: bool = True, |
|
) -> Union[UNet2DConditionOutput, Tuple]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor |
|
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps |
|
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). |
|
|
|
Returns: |
|
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: |
|
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
""" |
|
|
|
|
|
|
|
|
|
default_overall_up_factor = 2**self.num_upsamplers |
|
|
|
|
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): |
|
print("Forward upsample size to force interpolation output size.") |
|
forward_upsample_size = True |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if self.config.center_input_sample: |
|
sample = 2 * sample - 1.0 |
|
|
|
|
|
if isinstance(timestep, list): |
|
timesteps = timestep[0] |
|
step = len(timestep) |
|
else: |
|
timesteps = timestep |
|
step = 1 |
|
if not torch.is_tensor(timesteps) and (not isinstance(timesteps,list)): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif (not isinstance(timesteps,list)) and len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
if (not isinstance(timesteps,list)) and len(timesteps.shape) == 1: |
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
elif isinstance(timesteps, list): |
|
|
|
timesteps = warpped_timestep(timesteps, sample.shape[0]).to(sample.device) |
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=self.dtype) |
|
|
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.class_embedding is not None: |
|
if class_labels is None: |
|
raise ValueError("class_labels should be provided when num_class_embeds > 0") |
|
|
|
if self.config.class_embed_type == "timestep": |
|
class_labels = self.time_proj(class_labels) |
|
|
|
|
|
|
|
class_labels = class_labels.to(dtype=sample.dtype) |
|
|
|
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) |
|
|
|
if self.config.class_embeddings_concat: |
|
emb = torch.cat([emb, class_emb], dim=-1) |
|
else: |
|
emb = emb + class_emb |
|
|
|
if self.config.addition_embed_type == "text": |
|
aug_emb = self.add_embedding(encoder_hidden_states) |
|
emb = emb + aug_emb |
|
|
|
|
|
|
|
if self.time_embed_act is not None: |
|
emb = self.time_embed_act(emb) |
|
|
|
if self.encoder_hid_proj is not None: |
|
print("Encoder hid projections are not none") |
|
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) |
|
|
|
|
|
order = self.order |
|
|
|
ipow = int(np.sqrt(9 + 8*order)) |
|
cond = order in [0, 1, 2, 3, 5, 10, 15, 25, 35] |
|
if isinstance(mod, int): |
|
cond = order % mod == 0 |
|
elif mod == "pro": |
|
cond = ipow * ipow == (9 + 8 * order) |
|
elif mod == "50ls": |
|
cond = order in [0, 1, 2, 3, 5, 10, 15, 25, 35] |
|
elif mod == "50ls2": |
|
cond = order in [0, 10, 11, 12, 15, 20, 25, 30,35,45] |
|
elif mod == "50ls3": |
|
cond = order in [0, 20, 25, 30,35,45,46,47,48,49] |
|
elif mod == "50ls4": |
|
cond = order in [0, 9, 13, 14, 15, 28, 29, 32, 36,45] |
|
elif mod == "100ls": |
|
cond = order > 85 or order < 10 or order % 5 == 0 |
|
elif mod == "75ls": |
|
cond = order > 65 or order < 10 or order % 5 == 0 |
|
elif mod == "s2": |
|
cond = order < 20 or order > 40 or order % 2 == 0 |
|
|
|
if cond: |
|
|
|
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
down_block_res_samples = (sample,) |
|
print(f"Shape of sample at the start of downsample: {sample.shape}") |
|
for i, downsample_block in enumerate(self.down_blocks): |
|
print(f"\n--- Downsample Block {i+1} ---") |
|
print(f" Input shape: {sample.shape}") |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
print("has cross attention") |
|
additional_residuals = {} |
|
if down_intrablock_additional_residuals is not None and len(down_intrablock_additional_residuals) > 0: |
|
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) |
|
print(f" Additional Residuals shape: {additional_residuals['additional_residuals'].shape}") |
|
|
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
**additional_residuals |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) |
|
|
|
|
|
print(f" Output shape: {sample.shape}") |
|
for j, res_sample in enumerate(res_samples): |
|
print(f" Res sample {j+1} shape: {res_sample.shape}") |
|
down_block_res_samples += res_samples |
|
|
|
|
|
|
|
if down_block_additional_residuals is not None: |
|
new_down_block_res_samples = () |
|
|
|
for down_block_res_sample, down_block_additional_residual in zip( |
|
down_block_res_samples, down_block_additional_residuals |
|
): |
|
down_block_res_sample = down_block_res_sample + down_block_additional_residual |
|
new_down_block_res_samples += (down_block_res_sample,) |
|
|
|
down_block_res_samples = new_down_block_res_samples |
|
|
|
|
|
if down_block_additional_residuals is not None: |
|
new_down_block_res_samples = () |
|
for down_block_res_sample, down_block_additional_residual in zip( |
|
down_block_res_samples, down_block_additional_residuals |
|
): |
|
down_block_res_sample = down_block_res_sample + down_block_additional_residual |
|
new_down_block_res_samples += (down_block_res_sample,) |
|
down_block_res_samples = new_down_block_res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: |
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
else: |
|
sample = self.mid_block(sample, emb) |
|
|
|
if down_intrablock_additional_residuals is not None and len(down_intrablock_additional_residuals) > 0 and sample.shape == down_intrablock_additional_residuals[0].shape: |
|
sample += down_intrablock_additional_residuals.pop(0) |
|
|
|
if mid_block_additional_residual is not None: |
|
sample = sample + mid_block_additional_residual |
|
|
|
|
|
|
|
setattr(self, 'skip_feature', deepcopy(down_block_res_samples)) |
|
setattr(self, 'toup_feature', sample.detach().clone()) |
|
|
|
|
|
|
|
|
|
|
|
if isinstance(timestep, list): |
|
|
|
timesteps = warpped_timestep(timestep, sample.shape[0]).to(sample.device) |
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=self.dtype) |
|
|
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
|
|
down_block_res_samples = warpped_skip_feature(down_block_res_samples, step) |
|
sample = warpped_feature(sample, step) |
|
encoder_hidden_states = warpped_text_emb(encoder_hidden_states, step) |
|
|
|
|
|
else: |
|
down_block_res_samples = self.skip_feature |
|
sample = self.toup_feature |
|
|
|
|
|
down_block_res_samples = warpped_skip_feature(down_block_res_samples, step) |
|
sample = warpped_feature(sample, step) |
|
encoder_hidden_states = warpped_text_emb(encoder_hidden_states, step) |
|
|
|
|
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
is_final_block = i == len(self.up_blocks) - 1 |
|
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
|
|
|
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
|
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
upsample_size=upsample_size, |
|
attention_mask=attention_mask, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size |
|
) |
|
|
|
|
|
if self.conv_norm_out: |
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNet2DConditionOutput(sample=sample) |
|
return forward |
|
if model.__class__.__name__ == 'UNet2DConditionModel': |
|
model.forward = faster_forward(model) |
|
|
|
def register_orig_forward(model, mod = '50ls'): |
|
def orig_forward(self): |
|
def forward( |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
mid_block_additional_residual: Optional[torch.Tensor] = None, |
|
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[UNet2DConditionOutput, Tuple]: |
|
|
|
default_overall_up_factor = 2**self.num_upsamplers |
|
|
|
|
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
for dim in sample.shape[-2:]: |
|
if dim % default_overall_up_factor != 0: |
|
|
|
forward_upsample_size = True |
|
break |
|
|
|
if attention_mask is not None: |
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
|
|
if self.config.center_input_sample: |
|
sample = 2 * sample - 1.0 |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
t_emb = t_emb.to(dtype=sample.dtype) |
|
|
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
aug_emb = None |
|
|
|
if self.class_embedding is not None: |
|
if class_labels is None: |
|
raise ValueError("class_labels should be provided when num_class_embeds > 0") |
|
|
|
if self.config.class_embed_type == "timestep": |
|
class_labels = self.time_proj(class_labels) |
|
class_labels = class_labels.to(dtype=sample.dtype) |
|
|
|
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) |
|
|
|
if self.config.class_embeddings_concat: |
|
emb = torch.cat([emb, class_emb], dim=-1) |
|
else: |
|
emb = emb + class_emb |
|
|
|
if self.config.addition_embed_type == "text": |
|
aug_emb = self.add_embedding(encoder_hidden_states) |
|
elif self.config.addition_embed_type == "text_image": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
|
|
image_embs = added_cond_kwargs.get("image_embeds") |
|
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) |
|
aug_emb = self.add_embedding(text_embs, image_embs) |
|
elif self.config.addition_embed_type == "text_time": |
|
|
|
if "text_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
text_embeds = added_cond_kwargs.get("text_embeds") |
|
if "time_ids" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" |
|
) |
|
time_ids = added_cond_kwargs.get("time_ids") |
|
time_embeds = self.add_time_proj(time_ids.flatten()) |
|
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) |
|
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) |
|
add_embeds = add_embeds.to(emb.dtype) |
|
aug_emb = self.add_embedding(add_embeds) |
|
elif self.config.addition_embed_type == "image": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
image_embs = added_cond_kwargs.get("image_embeds") |
|
aug_emb = self.add_embedding(image_embs) |
|
elif self.config.addition_embed_type == "image_hint": |
|
|
|
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" |
|
) |
|
image_embs = added_cond_kwargs.get("image_embeds") |
|
hint = added_cond_kwargs.get("hint") |
|
aug_emb, hint = self.add_embedding(image_embs, hint) |
|
sample = torch.cat([sample, hint], dim=1) |
|
|
|
emb = emb + aug_emb if aug_emb is not None else emb |
|
|
|
if self.time_embed_act is not None: |
|
emb = self.time_embed_act(emb) |
|
|
|
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": |
|
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) |
|
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" |
|
) |
|
|
|
image_embeds = added_cond_kwargs.get("image_embeds") |
|
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) |
|
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" |
|
) |
|
image_embeds = added_cond_kwargs.get("image_embeds") |
|
encoder_hidden_states = self.encoder_hid_proj(image_embeds) |
|
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj": |
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" |
|
) |
|
image_embeds = added_cond_kwargs.get("image_embeds") |
|
image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype) |
|
encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1) |
|
|
|
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: |
|
cross_attention_kwargs = cross_attention_kwargs.copy() |
|
gligen_args = cross_attention_kwargs.pop("gligen") |
|
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} |
|
|
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 |
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
|
|
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None |
|
|
|
is_adapter = down_intrablock_additional_residuals is not None |
|
|
|
|
|
|
|
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: |
|
deprecate( |
|
"T2I should not use down_block_additional_residuals", |
|
"1.3.0", |
|
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ |
|
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ |
|
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", |
|
standard_warn=False, |
|
) |
|
down_intrablock_additional_residuals = down_block_additional_residuals |
|
is_adapter = True |
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
|
|
additional_residuals = {} |
|
if is_adapter and len(down_intrablock_additional_residuals) > 0: |
|
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) |
|
|
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
**additional_residuals, |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale) |
|
if is_adapter and len(down_intrablock_additional_residuals) > 0: |
|
sample += down_intrablock_additional_residuals.pop(0) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
if is_controlnet: |
|
new_down_block_res_samples = () |
|
|
|
for down_block_res_sample, down_block_additional_residual in zip( |
|
down_block_res_samples, down_block_additional_residuals |
|
): |
|
down_block_res_sample = down_block_res_sample + down_block_additional_residual |
|
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) |
|
|
|
down_block_res_samples = new_down_block_res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: |
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
else: |
|
sample = self.mid_block(sample, emb) |
|
|
|
|
|
if ( |
|
is_adapter |
|
and len(down_intrablock_additional_residuals) > 0 |
|
and sample.shape == down_intrablock_additional_residuals[0].shape |
|
): |
|
sample += down_intrablock_additional_residuals.pop(0) |
|
|
|
if is_controlnet: |
|
sample = sample + mid_block_additional_residual |
|
|
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
is_final_block = i == len(self.up_blocks) - 1 |
|
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
|
|
|
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
|
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
upsample_size=upsample_size, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
upsample_size=upsample_size, |
|
scale=lora_scale, |
|
) |
|
|
|
|
|
if self.conv_norm_out: |
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNet2DConditionOutput(sample=sample) |
|
return forward |
|
if model.__class__.__name__ == 'UNet2DConditionModel': |
|
model.forward = orig_forward(model) |
|
|
|
def register_faster_orig_forward(model, mod = '50ls4'): |
|
def faster_orig_forward(self): |
|
def forward( |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
mid_block_additional_residual: Optional[torch.Tensor] = None, |
|
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[UNet2DConditionOutput, Tuple]: |
|
|
|
default_overall_up_factor = 2**self.num_upsamplers |
|
|
|
|
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
for dim in sample.shape[-2:]: |
|
if dim % default_overall_up_factor != 0: |
|
|
|
forward_upsample_size = True |
|
break |
|
|
|
if attention_mask is not None: |
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
|
|
if self.config.center_input_sample: |
|
sample = 2 * sample - 1.0 |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
t_emb = t_emb.to(dtype=sample.dtype) |
|
|
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
aug_emb = None |
|
|
|
if self.class_embedding is not None: |
|
if class_labels is None: |
|
raise ValueError("class_labels should be provided when num_class_embeds > 0") |
|
|
|
if self.config.class_embed_type == "timestep": |
|
class_labels = self.time_proj(class_labels) |
|
class_labels = class_labels.to(dtype=sample.dtype) |
|
|
|
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) |
|
|
|
if self.config.class_embeddings_concat: |
|
emb = torch.cat([emb, class_emb], dim=-1) |
|
else: |
|
emb = emb + class_emb |
|
|
|
if self.config.addition_embed_type == "text": |
|
aug_emb = self.add_embedding(encoder_hidden_states) |
|
elif self.config.addition_embed_type == "text_image": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
|
|
image_embs = added_cond_kwargs.get("image_embeds") |
|
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) |
|
aug_emb = self.add_embedding(text_embs, image_embs) |
|
elif self.config.addition_embed_type == "text_time": |
|
|
|
if "text_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
text_embeds = added_cond_kwargs.get("text_embeds") |
|
if "time_ids" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" |
|
) |
|
time_ids = added_cond_kwargs.get("time_ids") |
|
time_embeds = self.add_time_proj(time_ids.flatten()) |
|
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) |
|
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) |
|
add_embeds = add_embeds.to(emb.dtype) |
|
aug_emb = self.add_embedding(add_embeds) |
|
elif self.config.addition_embed_type == "image": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
image_embs = added_cond_kwargs.get("image_embeds") |
|
aug_emb = self.add_embedding(image_embs) |
|
elif self.config.addition_embed_type == "image_hint": |
|
|
|
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" |
|
) |
|
image_embs = added_cond_kwargs.get("image_embeds") |
|
hint = added_cond_kwargs.get("hint") |
|
aug_emb, hint = self.add_embedding(image_embs, hint) |
|
sample = torch.cat([sample, hint], dim=1) |
|
|
|
emb = emb + aug_emb if aug_emb is not None else emb |
|
|
|
if self.time_embed_act is not None: |
|
emb = self.time_embed_act(emb) |
|
|
|
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": |
|
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) |
|
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" |
|
) |
|
|
|
image_embeds = added_cond_kwargs.get("image_embeds") |
|
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) |
|
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" |
|
) |
|
image_embeds = added_cond_kwargs.get("image_embeds") |
|
encoder_hidden_states = self.encoder_hid_proj(image_embeds) |
|
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj": |
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" |
|
) |
|
image_embeds = added_cond_kwargs.get("image_embeds") |
|
image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype) |
|
encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1) |
|
|
|
|
|
order = model.order |
|
|
|
ipow = int(np.sqrt(9 + 8*order)) |
|
cond = order in [0, 1, 2, 3, 5, 10, 15, 25, 35] |
|
if isinstance(mod, int): |
|
cond = order % mod == 0 |
|
elif mod == "pro": |
|
cond = ipow * ipow == (9 + 8 * order) |
|
elif mod == "50ls": |
|
cond = order in [0, 1, 2, 3, 5, 10, 15, 25, 35] |
|
elif mod == "50ls2": |
|
cond = order in [0, 10, 11, 12, 15, 20, 25, 30,35,45] |
|
elif mod == "50ls3": |
|
cond = order in [0, 20, 25, 30,35,45,46,47,48,49] |
|
elif mod == "50ls4": |
|
cond = order in [0, 9, 13, 14, 15, 28, 29, 32, 36,45] |
|
elif mod == "100ls": |
|
cond = order > 85 or order < 10 or order % 5 == 0 |
|
elif mod == "75ls": |
|
cond = order > 65 or order < 10 or order % 5 == 0 |
|
elif mod == "s2": |
|
cond = order < 20 or order > 40 or order % 2 == 0 |
|
|
|
if cond: |
|
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: |
|
cross_attention_kwargs = cross_attention_kwargs.copy() |
|
gligen_args = cross_attention_kwargs.pop("gligen") |
|
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} |
|
|
|
|
|
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 |
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
|
|
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None |
|
|
|
is_adapter = down_intrablock_additional_residuals is not None |
|
|
|
|
|
|
|
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: |
|
deprecate( |
|
"T2I should not use down_block_additional_residuals", |
|
"1.3.0", |
|
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ |
|
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ |
|
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", |
|
standard_warn=False, |
|
) |
|
down_intrablock_additional_residuals = down_block_additional_residuals |
|
is_adapter = True |
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
|
|
additional_residuals = {} |
|
if is_adapter and len(down_intrablock_additional_residuals) > 0: |
|
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) |
|
|
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
**additional_residuals, |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale) |
|
if is_adapter and len(down_intrablock_additional_residuals) > 0: |
|
sample += down_intrablock_additional_residuals.pop(0) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
if is_controlnet: |
|
new_down_block_res_samples = () |
|
|
|
for down_block_res_sample, down_block_additional_residual in zip( |
|
down_block_res_samples, down_block_additional_residuals |
|
): |
|
down_block_res_sample = down_block_res_sample + down_block_additional_residual |
|
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) |
|
|
|
down_block_res_samples = new_down_block_res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: |
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
else: |
|
sample = self.mid_block(sample, emb) |
|
|
|
|
|
if ( |
|
is_adapter |
|
and len(down_intrablock_additional_residuals) > 0 |
|
and sample.shape == down_intrablock_additional_residuals[0].shape |
|
): |
|
sample += down_intrablock_additional_residuals.pop(0) |
|
|
|
if is_controlnet: |
|
sample = sample + mid_block_additional_residual |
|
|
|
|
|
|
|
setattr(self, 'skip_feature', deepcopy(down_block_res_samples)) |
|
setattr(self, 'toup_feature', sample.detach().clone()) |
|
|
|
|
|
|
|
|
|
|
|
if isinstance(timestep, list): |
|
step = len(timestep) |
|
|
|
timesteps = warpped_timestep(timestep, sample.shape[0]).to(sample.device) |
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=self.dtype) |
|
|
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
else: |
|
step = 1 |
|
down_block_res_samples = warpped_skip_feature(down_block_res_samples, step) |
|
sample = warpped_feature(sample, step) |
|
encoder_hidden_states = warpped_text_emb(encoder_hidden_states, step) |
|
|
|
|
|
else: |
|
step = 1 |
|
down_block_res_samples = self.skip_feature |
|
sample = self.toup_feature |
|
|
|
|
|
down_block_res_samples = warpped_skip_feature(down_block_res_samples, step) |
|
sample = warpped_feature(sample, step) |
|
encoder_hidden_states = warpped_text_emb(encoder_hidden_states, step) |
|
|
|
|
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
is_final_block = i == len(self.up_blocks) - 1 |
|
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
|
|
|
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
|
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
upsample_size=upsample_size, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
upsample_size=upsample_size, |
|
scale=lora_scale, |
|
) |
|
|
|
|
|
if self.conv_norm_out: |
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNet2DConditionOutput(sample=sample) |
|
return forward |
|
if model.__class__.__name__ == 'UNet2DConditionModel': |
|
model.forward = faster_orig_forward(model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def register_original_forward(model, mod = '50ls'): |
|
def original_forward(self): |
|
def forward( |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
mid_block_additional_residual: Optional[torch.Tensor] = None, |
|
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
return_dict: bool = True, |
|
) -> Union[UNet2DConditionOutput, Tuple]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor |
|
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps |
|
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). |
|
|
|
Returns: |
|
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: |
|
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
""" |
|
|
|
|
|
|
|
|
|
default_overall_up_factor = 2**self.num_upsamplers |
|
|
|
|
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
for dim in sample.shape[-2:]: |
|
if dim % default_overall_up_factor != 0: |
|
|
|
forward_upsample_size = True |
|
break |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
|
|
if self.config.center_input_sample: |
|
sample = 2 * sample - 1.0 |
|
|
|
|
|
t_emb = self.get_time_embed(sample=sample, timestep=timestep) |
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
|
|
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels) |
|
if class_emb is not None: |
|
if self.config.class_embeddings_concat: |
|
emb = torch.cat([emb, class_emb], dim=-1) |
|
else: |
|
emb = emb + class_emb |
|
|
|
aug_emb = self.get_aug_embed( |
|
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs |
|
) |
|
if self.config.addition_embed_type == "image_hint": |
|
aug_emb, hint = aug_emb |
|
sample = torch.cat([sample, hint], dim=1) |
|
|
|
emb = emb + aug_emb if aug_emb is not None else emb |
|
|
|
if self.time_embed_act is not None: |
|
emb = self.time_embed_act(emb) |
|
|
|
encoder_hidden_states = self.process_encoder_hidden_states( |
|
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs |
|
) |
|
|
|
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: |
|
cross_attention_kwargs = cross_attention_kwargs.copy() |
|
gligen_args = cross_attention_kwargs.pop("gligen") |
|
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} |
|
|
|
|
|
|
|
|
|
if cross_attention_kwargs is not None: |
|
cross_attention_kwargs = cross_attention_kwargs.copy() |
|
lora_scale = cross_attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
|
|
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None |
|
|
|
is_adapter = down_intrablock_additional_residuals is not None |
|
|
|
|
|
|
|
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: |
|
deprecate( |
|
"T2I should not use down_block_additional_residuals", |
|
"1.3.0", |
|
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ |
|
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ |
|
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", |
|
standard_warn=False, |
|
) |
|
down_intrablock_additional_residuals = down_block_additional_residuals |
|
is_adapter = True |
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
|
|
additional_residuals = {} |
|
if is_adapter and len(down_intrablock_additional_residuals) > 0: |
|
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) |
|
|
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
**additional_residuals, |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) |
|
if is_adapter and len(down_intrablock_additional_residuals) > 0: |
|
sample += down_intrablock_additional_residuals.pop(0) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
if is_controlnet: |
|
new_down_block_res_samples = () |
|
|
|
for down_block_res_sample, down_block_additional_residual in zip( |
|
down_block_res_samples, down_block_additional_residuals |
|
): |
|
down_block_res_sample = down_block_res_sample + down_block_additional_residual |
|
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) |
|
|
|
down_block_res_samples = new_down_block_res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: |
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
else: |
|
sample = self.mid_block(sample, emb) |
|
|
|
|
|
if ( |
|
is_adapter |
|
and len(down_intrablock_additional_residuals) > 0 |
|
and sample.shape == down_intrablock_additional_residuals[0].shape |
|
): |
|
sample += down_intrablock_additional_residuals.pop(0) |
|
|
|
if is_controlnet: |
|
sample = sample + mid_block_additional_residual |
|
|
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
is_final_block = i == len(self.up_blocks) - 1 |
|
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
|
|
|
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
|
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
upsample_size=upsample_size, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
upsample_size=upsample_size, |
|
) |
|
|
|
|
|
if self.conv_norm_out: |
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNet2DConditionOutput(sample=sample) |
|
return forward |
|
if model.__class__.__name__ == 'UNet2DConditionModel': |
|
model.forward = original_forward(model) |
|
|
|
|
|
|
|
def register_normal_forward(model): |
|
def normal_forward(self): |
|
def forward( |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
mid_block_additional_residual: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[UNet2DConditionOutput, Tuple]: |
|
|
|
|
|
|
|
|
|
default_overall_up_factor = 2**self.num_upsamplers |
|
|
|
|
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
|
|
|
|
|
|
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): |
|
print("Forward upsample size to force interpolation output size.") |
|
forward_upsample_size = True |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if self.config.center_input_sample: |
|
sample = 2 * sample - 1.0 |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=self.dtype) |
|
|
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
|
|
if self.class_embedding is not None: |
|
if class_labels is None: |
|
raise ValueError("class_labels should be provided when num_class_embeds > 0") |
|
|
|
if self.config.class_embed_type == "timestep": |
|
class_labels = self.time_proj(class_labels) |
|
|
|
|
|
|
|
class_labels = class_labels.to(dtype=sample.dtype) |
|
|
|
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) |
|
|
|
if self.config.class_embeddings_concat: |
|
emb = torch.cat([emb, class_emb], dim=-1) |
|
else: |
|
emb = emb + class_emb |
|
|
|
if self.config.addition_embed_type == "text": |
|
aug_emb = self.add_embedding(encoder_hidden_states) |
|
emb = emb + aug_emb |
|
|
|
if self.time_embed_act is not None: |
|
emb = self.time_embed_act(emb) |
|
|
|
if self.encoder_hid_proj is not None: |
|
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) |
|
|
|
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
down_block_res_samples = (sample,) |
|
for i, downsample_block in enumerate(self.down_blocks): |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) |
|
|
|
|
|
|
|
down_block_res_samples += res_samples |
|
|
|
if down_block_additional_residuals is not None: |
|
new_down_block_res_samples = () |
|
|
|
for down_block_res_sample, down_block_additional_residual in zip( |
|
down_block_res_samples, down_block_additional_residuals |
|
): |
|
down_block_res_sample = down_block_res_sample + down_block_additional_residual |
|
new_down_block_res_samples += (down_block_res_sample,) |
|
|
|
down_block_res_samples = new_down_block_res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
|
|
if mid_block_additional_residual is not None: |
|
sample = sample + mid_block_additional_residual |
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
is_final_block = i == len(self.up_blocks) - 1 |
|
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
|
|
|
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
|
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
upsample_size=upsample_size, |
|
attention_mask=attention_mask, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size |
|
) |
|
|
|
|
|
|
|
|
|
if self.conv_norm_out: |
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNet2DConditionOutput(sample=sample) |
|
return forward |
|
if model.__class__.__name__ == 'UNet2DConditionModel': |
|
model.forward = normal_forward(model) |
|
|
|
def register_time(unet, t): |
|
setattr(unet, 'order', t) |
|
|
|
def register_controlnet_pipeline(pipe): |
|
def new_call(self): |
|
@torch.no_grad() |
|
def call( |
|
prompt: Union[str, List[str]] = None, |
|
image: Union[ |
|
torch.FloatTensor, |
|
PIL.Image.Image, |
|
np.ndarray, |
|
List[torch.FloatTensor], |
|
List[PIL.Image.Image], |
|
List[np.ndarray], |
|
] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0, |
|
guess_mode: bool = False, |
|
): |
|
|
|
self.check_inputs( |
|
prompt, |
|
image, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
controlnet_conditioning_scale, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet |
|
|
|
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): |
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) |
|
|
|
global_pool_conditions = ( |
|
controlnet.config.global_pool_conditions |
|
if isinstance(controlnet, ControlNetModel) |
|
else controlnet.nets[0].config.global_pool_conditions |
|
) |
|
guess_mode = guess_mode or global_pool_conditions |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
) |
|
|
|
|
|
if isinstance(controlnet, ControlNetModel): |
|
image = self.prepare_image( |
|
image=image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
height, width = image.shape[-2:] |
|
elif isinstance(controlnet, MultiControlNetModel): |
|
images = [] |
|
|
|
for image_ in image: |
|
image_ = self.prepare_image( |
|
image=image_, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=controlnet.dtype, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
guess_mode=guess_mode, |
|
) |
|
|
|
images.append(image_) |
|
|
|
image = images |
|
height, width = image[0].shape[-2:] |
|
else: |
|
assert False |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
self.init_latent = latents.detach().clone() |
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
|
|
all_steps = len(self.scheduler.timesteps) |
|
curr_span = 1 |
|
curr_step = 0 |
|
|
|
idx = 1 |
|
keytime = [0,1,2,3,5,10,15,25,35] |
|
keytime.append(all_steps) |
|
while curr_step<all_steps: |
|
register_time(self.unet, curr_step) |
|
|
|
if curr_span>0: |
|
time_ls = [] |
|
for i in range(curr_step, curr_step+curr_span): |
|
if i<all_steps: |
|
time_ls.append(self.scheduler.timesteps[i]) |
|
else: |
|
break |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, time_ls[0]) |
|
|
|
if curr_step in [0,1,2,3,5,10,15,25,35]: |
|
|
|
control_model_input = latent_model_input |
|
controlnet_prompt_embeds = prompt_embeds |
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet( |
|
control_model_input, |
|
time_ls[0], |
|
encoder_hidden_states=controlnet_prompt_embeds, |
|
controlnet_cond=image, |
|
conditioning_scale=controlnet_conditioning_scale, |
|
guess_mode=guess_mode, |
|
return_dict=False, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
down_block_res_samples = None |
|
mid_block_res_sample = None |
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
time_ls, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
|
|
if isinstance(time_ls, list): |
|
step_span = len(time_ls) |
|
bs = noise_pred.shape[0] |
|
bs_perstep = bs//step_span |
|
|
|
denoised_latent = latents |
|
for i, timestep in enumerate(time_ls): |
|
if timestep/1000 < 0.5: |
|
denoised_latent = denoised_latent + 0.003*self.init_latent |
|
curr_noise = noise_pred[i*bs_perstep:(i+1)*bs_perstep] |
|
denoised_latent = self.scheduler.step(curr_noise, timestep, denoised_latent, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
latents = denoised_latent |
|
|
|
curr_step += curr_span |
|
idx += 1 |
|
if curr_step<all_steps: |
|
curr_span = keytime[idx] - keytime[idx-1] |
|
|
|
|
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.unet.to("cpu") |
|
self.controlnet.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
return call |
|
pipe.call = new_call(pipe) |
|
|
|
@torch.no_grad() |
|
def multistep_pre(self, noise_pred, t, x): |
|
step_span = len(t) |
|
bs = noise_pred.shape[0] |
|
bs_perstep = bs//step_span |
|
|
|
denoised_latent = x |
|
for i, timestep in enumerate(t): |
|
curr_noise = noise_pred[i*bs_perstep:(i+1)*bs_perstep] |
|
denoised_latent = self.scheduler.step(curr_noise, timestep, denoised_latent)['prev_sample'] |
|
return denoised_latent |
|
|
|
def register_t2v(model): |
|
def new_back(self): |
|
def backward_loop( |
|
latents, |
|
timesteps, |
|
prompt_embeds, |
|
guidance_scale, |
|
callback, |
|
callback_steps, |
|
num_warmup_steps, |
|
extra_step_kwargs, |
|
cross_attention_kwargs=None,): |
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
num_steps = (len(timesteps) - num_warmup_steps) // self.scheduler.order |
|
import time |
|
if num_steps<10: |
|
with self.progress_bar(total=num_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
setattr(self.unet, 'order', i) |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
else: |
|
all_timesteps = len(timesteps) |
|
curr_step = 0 |
|
|
|
while curr_step<all_timesteps: |
|
register_time(self.unet, curr_step) |
|
|
|
time_ls = [] |
|
time_ls.append(timesteps[curr_step]) |
|
curr_step += 1 |
|
cond = curr_step in [0,1,2,3,5,10,15,25,35] |
|
|
|
while (not cond) and (curr_step<all_timesteps): |
|
time_ls.append(timesteps[curr_step]) |
|
curr_step += 1 |
|
cond = curr_step in [0,1,2,3,5,10,15,25,35] |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
time_ls, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = multistep_pre(self, noise_pred, time_ls, latents) |
|
|
|
return latents.clone().detach() |
|
return backward_loop |
|
model.backward_loop = new_back(model) |
|
|
|
|