supatest2 / src /pipeline.py
manbeast3b's picture
Update src/pipeline.py
61b487f verified
import torch
from PIL.Image import Image
from diffusers import StableDiffusionXLPipeline
from pipelines.models import TextToImageRequest
from diffusers import DDIMScheduler
from torch import Generator
from loss import SchedulerWrapper
from utils import register_parallel_pipeline_orig, register_faster_orig_forward, register_time
from onediffx import compile_pipe, save_pipe, load_pipe
import numpy as np
def callback_dynamic_cfg(pipe, step_index, timestep, callback_kwargs):
if step_index == int(pipe.num_timesteps * 0.78):
callback_kwargs['prompt_embeds'] = callback_kwargs['prompt_embeds'].chunk(2)[-1]
callback_kwargs['add_text_embeds'] = callback_kwargs['add_text_embeds'].chunk(2)[-1]
callback_kwargs['add_time_ids'] = callback_kwargs['add_time_ids'].chunk(2)[-1]
pipe._guidance_scale = 0.0
return callback_kwargs
def load_pipeline(pipeline=None) -> StableDiffusionXLPipeline:
if not pipeline:
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stablediffusionapi/newdream-sdxl-20",
torch_dtype=torch.float16,
).to("cuda")
pipeline.scheduler = SchedulerWrapper(DDIMScheduler.from_config(pipeline.scheduler.config))
register_parallel_pipeline_orig(pipeline)
register_faster_orig_forward(pipeline.unet)
register_time(pipeline.unet, 0)
pipeline = compile_pipe(pipeline)
# load_pipe(pipeline, dir="/home/sandbox/.cache/huggingface/hub/models--RobertML--cached-pipe-02/snapshots/58d70deae87034cce351b780b48841f9746d4ad7")
np.save('count_array.npy', [0])
for _ in range(1):
deepcache_output = pipeline(prompt="telestereography, unstrengthen, preadministrator, copatroness, hyperpersonal, paramountness, paranoid, guaniferous", output_type="pil", num_inference_steps=20)
pipeline.scheduler.prepare_loss()
# for _ in range(2):
# pipeline(prompt="telestereography, unstrengthen, preadministrator, copatroness, hyperpersonal, paramountness, paranoid, guaniferous", output_type="pil", num_inference_steps=20)
return pipeline
def infer(request: TextToImageRequest, pipeline: StableDiffusionXLPipeline) -> Image:
global image_count
if request.seed is None:
generator = None
else:
generator = Generator(pipeline.device).manual_seed(request.seed)
step = np.load('count_array.npy')[0]
register_time(pipeline.unet, step)
print("step is : ", step)
step+=1; np.save('count_array.npy', [step])
# register_time(pipeline.unet, image_count)
return pipeline(
prompt=request.prompt,
negative_prompt=request.negative_prompt,
width=request.width,
height=request.height,
generator=generator,
num_inference_steps=20,
# cache_interval=1,
# cache_layer_id=1,
# cache_block_id=0,
eta=1.0,
guidance_scale = 5.0,
guidance_rescale = 0.0,
# callback_on_step_end=callback_dynamic_cfg,
# callback_on_step_end_tensor_inputs=['prompt_embeds', 'add_text_embeds', 'add_time_ids'],
).images[0]