#6 from huggingface_hub.constants import HF_HUB_CACHE from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel import torch import torch._dynamo import gc import os from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny from PIL.Image import Image from pipelines.models import TextToImageRequest from torch import Generator from diffusers import FluxTransformer2DModel, DiffusionPipeline from torchao.quantization import quantize_, int8_weight_only, fpx_weight_only os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" os.environ["TOKENIZERS_PARALLELISM"] = "True" torch._dynamo.config.suppress_errors = True text = "manbeast3b/flux-text-encoder" Pipeline = None ids = "slobers/Flux.1.Schnella" Revision = "e34d670e44cecbbc90e4962e7aada2ac5ce8b55b" def load_traced_clip_text_model(model_path, config_path, tokenizer_path, device="cpu"): """ Loads a traced CLIPTextModel. Args: model_path: Path to the traced model file (pytorch_model.bin). config_path: Path to the directory containing the config.json file. tokenizer_path: Path to the directory containing the tokenizer files. device: Device to load the model onto (e.g., "cpu" or "cuda"). Returns: The loaded traced model and tokenizer. """ # Load the traced model model = torch.jit.load(os.path.join(model_path, "pytorch_model.bin"), map_location=device) model.eval() # Load the config config = CLIPTextConfig.from_pretrained(config_path) # Create a dummy CLIPTextModel (we only need it for the config) dummy_model = CLIPTextModel(config)#.to(device) # Load the tokenizer tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path) return model, dummy_model.config, tokenizer def load_pipeline() -> Pipeline: device = "cuda" path = os.path.join(HF_HUB_CACHE, "models--slobers--Flux.1.Schnella/snapshots/e34d670e44cecbbc90e4962e7aada2ac5ce8b55b/transformer") transformer = FluxTransformer2DModel.from_pretrained(path, torch_dtype=torch.bfloat16, use_safetensors=False) # text = os.path.join(HF_HUB_CACHE, "models--manbeast3b--flux-text-encoder/snapshots/8f16aae56e82e1b2530e931a2c9932a7099c8b3f/") # model, config, tokenizer = load_traced_clip_text_model(text, text, text, device) # text = os.path.join(HF_HUB_CACHE, "models--manbeast3b--flux_te1/snapshots/13c9a50bd895859518720b4fdd021c747ecf7dbc/") # # Load the model (you need to specify the original model architecture) # model = CLIPTextModel.from_pretrained("slobers/Flux.1.Schnella", revision="e34d670e44cecbbc90e4962e7aada2ac5ce8b55b", subfolder="text_encoder") # # Load the tokenizer # tokenizer = CLIPTokenizer.from_pretrained(text) # Load the tokenizer from your repo # # Load the quantized state_dict # state_dict = torch.load(f"{text}/pytorch_model.bin") # Replace with the path to your local file or from your repo # # Load the state_dict into the model # model.load_state_dict(state_dict) # model = CLIPTextModel.from_pretrained(text, torch_dtype=torch.bfloat16) pipeline = FluxPipeline.from_pretrained(ids, revision=Revision, transformer=transformer, local_files_only=True, torch_dtype=torch.bfloat16,) # text_encoder= model, pipeline.to("cuda") pipeline.transformer = torch.compile(pipeline.transformer, mode="max-autotune") for _ in range(3): pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256) return pipeline @torch.no_grad() def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image: generator = Generator(pipeline.device).manual_seed(request.seed) return pipeline( request.prompt, generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, ).images[0]