File size: 12,633 Bytes
4770791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "976841dc",
   "metadata": {},
   "source": [
    "## Preparación de un dataset\n",
    "\n",
    "Descargamos el dataset y lo preparamos para el entrenamiento. En el caso de ejemplo, usaremos toxic-teenage-relationships, que son frases que describen si un comporamiento es tóxico o sano. Tienen una campo de texto y un campo de etiqueta, que vale 1 si es tóxico y 0 si no lo es. Acumula 268 ejemplos de entrenamiento y 66 para testear."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b9a1f255",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'label': 1, 'text': 'Llamar muchas veces porque no te responden los mensajes'}"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "data_files = {\"train\": \"train.csv\", \"test\": \"test.csv\"}\n",
    "dataset = load_dataset(\"toxic-teenage-relationships\", data_files=data_files, sep=\";\")\n",
    "dataset['train'][201]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6d0c740a",
   "metadata": {},
   "source": [
    "Una vez cargado el dataset, se crea un tokenizador para procesar el texto e incluir una estrategia para el padding y el truncamiento. Par poder procesar el dataset en un solo paso, se utiliza el método dataset.map para preprocesar todo el dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "01673605",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"bert-base-multilingual-cased\")\n",
    "\n",
    "\n",
    "def tokenize_function(examples):\n",
    "    return tokenizer(examples[\"text\"], padding=\"max_length\", truncation=True)\n",
    "\n",
    "\n",
    "tokenized_datasets = dataset.map(tokenize_function, batched=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "08aacc14",
   "metadata": {},
   "source": [
    "Ahora vamos a convertir el dataset en formator de TensorFlow. Para eso usamos DefaultDataCollator, que junta los tensores en un batch para que el modelo se entrene en él. Debemos especificar el argumento return_tensors=\"tf\". \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "4a854ead",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import DefaultDataCollator\n",
    "data_collator = DefaultDataCollator(return_tensors=\"tf\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "06346bc5",
   "metadata": {},
   "source": [
    "guardamos los dataset de train y de test\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "698a98ca",
   "metadata": {},
   "outputs": [],
   "source": [
    "train_dataset = tokenized_datasets[\"train\"]\n",
    "eval_dataset = tokenized_datasets[\"test\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2c6d5142",
   "metadata": {},
   "source": [
    "A hora vamos a convertir los datasets tokenizados en datasets de TensorFlow con el método .to_tf_dataset. Las entradas están en columns y la etiqueta en label_cols"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "40a05ad9",
   "metadata": {},
   "outputs": [],
   "source": [
    "tf_train_dataset= train_dataset.to_tf_dataset(\n",
    "columns=[\"attention_mask\", \"input_ids\", \"token_type_ids\"],\n",
    "label_cols=\"labels\",\n",
    "shuffle=True,\n",
    "collate_fn=data_collator,\n",
    "batch_size=8,\n",
    ")\n",
    "tf_validation_dataset= eval_dataset.to_tf_dataset(\n",
    "columns=[\"attention_mask\", \"input_ids\", \"token_type_ids\"],\n",
    "label_cols=\"labels\",\n",
    "shuffle=False,\n",
    "collate_fn=data_collator,\n",
    "batch_size=8,\n",
    ")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "38a6c521",
   "metadata": {},
   "source": [
    "## Fine-tuning usando Fit\n",
    "\n",
    "En primer lugar, vamos a cargar el modelo TensorFlow con el número esperado e labels. En este caso, tenemos 2 categorías.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "843f218d",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2023-08-09 20:57:30.270009: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 367248384 exceeds 10% of free system memory.\n",
      "2023-08-09 20:57:30.504118: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 367248384 exceeds 10% of free system memory.\n",
      "2023-08-09 20:57:30.551016: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 367248384 exceeds 10% of free system memory.\n",
      "2023-08-09 20:57:37.098563: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 367248384 exceeds 10% of free system memory.\n",
      "2023-08-09 20:57:37.939022: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 367248384 exceeds 10% of free system memory.\n",
      "All PyTorch model weights were used when initializing TFBertForSequenceClassification.\n",
      "\n",
      "Some weights or buffers of the TF 2.0 model TFBertForSequenceClassification were not initialized from the PyTorch model and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
     ]
    }
   ],
   "source": [
    "import tensorflow as tf\n",
    "from transformers import TFAutoModelForSequenceClassification\n",
    "\n",
    "#Hay dos categorías, así que ponemos 2 etiquetas (0 sano 1 tóxico)\n",
    "model = TFAutoModelForSequenceClassification.from_pretrained(\"bert-base-multilingual-cased\", num_labels=2)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a31780ca",
   "metadata": {},
   "source": [
    "Ahora se aplica la función compile y fit como se haría con cualquier modelo Keras.\n",
    "Compile configura la fase de entrenamiento del modelo antes comenzar a optimizar, por eso se elige el optimizador (en nuestro caso, Adam), la función de pérdida y las métricas que se usarań para evaluar el rendimiento que se han puesto en las celdas anteriores. \n",
    "Fit entrena el modelo con los datos que se le han pasado, y al proporcionar un conjunto de validación se monitorea el rendimiento del modelo, por lo que se evalua mientras se entrena."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "3e01c5fb",
   "metadata": {},
   "outputs": [],
   "source": [
    "model.compile(\n",
    "optimizer=tf.keras.optimizers.Adam(learning_rate=5e-5),\n",
    "loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
    "metrics=tf.metrics.SparseCategoricalAccuracy(),\n",
    ")\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4840d701",
   "metadata": {},
   "source": [
    "sparse_categorical es el valor calculado en mi conjunto de datos de train, mientras que el que tiene el prefijo val es el que se calcula en el conjunto de datos de test. Si la métrica de test permanece igual o disminuye mientras aumenta el de train, el modelo está sobreajustando (overfitting)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "41f9da62",
   "metadata": {},
   "outputs": [],
   "source": [
    "from keras.callbacks import EarlyStopping\n",
    "#en este modelo he observado overfitting, por lo que voy a utilizar Early stopping para detener el entrenamiento en el momento\n",
    "#que se observe un incremento en el error de validación. \n",
    "#Deja pasar 2 epochs antes de interrumpir el entrenamiento, quedándose con el mejor valor\n",
    "early_stop=EarlyStopping(monitor=\"val_loss\",patience=2,mode=\"auto\", restore_best_weights=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "de7045d1",
   "metadata": {},
   "source": [
    "Ahora aplicamos el fit con un epoch de 10, que es las veces que pasará cada prototipo por el entrenador, teniendo en cuenta que parará cuando el valor de loss empiece a detectar overfitting"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "50e4097e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/10\n",
      "34/34 [==============================] - 592s 17s/step - loss: 0.7036 - sparse_categorical_accuracy: 0.4851 - val_loss: 0.6760 - val_sparse_categorical_accuracy: 0.6667\n",
      "Epoch 2/10\n",
      "34/34 [==============================] - 563s 17s/step - loss: 0.6176 - sparse_categorical_accuracy: 0.6866 - val_loss: 0.5916 - val_sparse_categorical_accuracy: 0.7121\n",
      "Epoch 3/10\n",
      "34/34 [==============================] - 562s 17s/step - loss: 0.6109 - sparse_categorical_accuracy: 0.6903 - val_loss: 0.7139 - val_sparse_categorical_accuracy: 0.5758\n",
      "Epoch 4/10\n",
      "34/34 [==============================] - 569s 17s/step - loss: 0.7128 - sparse_categorical_accuracy: 0.5858 - val_loss: 0.6790 - val_sparse_categorical_accuracy: 0.5606\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<keras.src.callbacks.History at 0x7fe030312700>"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=10, callbacks=[early_stop])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "fbeef13e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: \"tf_bert_for_sequence_classification\"\n",
      "_________________________________________________________________\n",
      " Layer (type)                Output Shape              Param #   \n",
      "=================================================================\n",
      " bert (TFBertMainLayer)      multiple                  177853440 \n",
      "                                                                 \n",
      " dropout_37 (Dropout)        multiple                  0         \n",
      "                                                                 \n",
      " classifier (Dense)          multiple                  1538      \n",
      "                                                                 \n",
      "=================================================================\n",
      "Total params: 177854978 (678.46 MB)\n",
      "Trainable params: 177854978 (678.46 MB)\n",
      "Non-trainable params: 0 (0.00 Byte)\n",
      "_________________________________________________________________\n"
     ]
    }
   ],
   "source": [
    "model.summary()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c4fa0fce",
   "metadata": {},
   "source": [
    "Aunque aparecen durante el proceso de fit, imprimimos las cifras de loss y accuracy obtenidas del modelo.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "4113ab57",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "('loss', 0.5915697813034058)\n",
      "('sparse_categorical_accuracy', 0.7121211886405945)\n"
     ]
    }
   ],
   "source": [
    "\n",
    "scores= model.evaluate(tf_validation_dataset, verbose=0)\n",
    "print((model.metrics_names[0], scores[0]))\n",
    "print((model.metrics_names[1], scores[1]))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9e61a040",
   "metadata": {},
   "source": [
    "# Guardando el modelo"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4af06209",
   "metadata": {},
   "source": [
    "Para Guardarlo, utilizamos esl método save_model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "0e0dff1a",
   "metadata": {},
   "outputs": [],
   "source": [
    "model.save(\"BERTmULT-k-MMG.keras\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3dfd1db6",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}