File size: 16,548 Bytes
f802df1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "976841dc",
   "metadata": {},
   "source": [
    "## Preparación de un dataset\n",
    "\n",
    "Descargamos el dataset y lo preparamos para el entrenamiento. En el caso de ejemplo, usaremos toxic-teenage-relationships, que son frases que describen si un comporamiento es tóxico o sano. Tienen una campo de texto y un campo de etiqueta, que vale 1 si es tóxico y 0 si no lo es. Acumula 267 ejemplos de entrenamiento y 66 para testear."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "b9a1f255",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'label': 1,\n",
       " 'text': 'Mi amiga no puede subir videos a tik tok porque su pareja no le deja'}"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "data_files = {\"train\": \"train.csv\", \"test\": \"test.csv\"}\n",
    "dataset = load_dataset(\"toxic-teenage-relationships\", data_files=data_files, sep=\";\")\n",
    "dataset['train'][100]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6d0c740a",
   "metadata": {},
   "source": [
    "Una vez cargado el dataset, se crea un tokenizador para procesar el texto e incluir una estrategia para el padding y el truncamiento. Para poder procesar el dataset en un solo paso, se utiliza el método dataset.map para preprocesar todo el dataset."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "01673605",
   "metadata": {},
   "outputs": [],
   "source": [
    "#en este ejemplo, utilizamos el AutoTokenizer\n",
    "from transformers import AutoTokenizer\n",
    "#from transformers import RobertaTokenizer\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"PlanTL-GOB-ES/roberta-base-bne\")\n",
    "\n",
    "\n",
    "def tokenize_function(examples):\n",
    "    return tokenizer(examples[\"text\"], padding=\"max_length\", truncation=True)\n",
    "\n",
    "\n",
    "tokenized_datasets = dataset.map(tokenize_function, batched=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "08aacc14",
   "metadata": {},
   "source": [
    "Ahora vamos a convertir el dataset en formator de TensorFlow. Para eso usamos DefaultDataCollator, que junta los tensores en un batch para que el modelo se entrene en él. Debemos especificar el argumento return_tensors=\"tf\". \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "4a854ead",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import DefaultDataCollator\n",
    "data_collator = DefaultDataCollator(return_tensors=\"tf\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "06346bc5",
   "metadata": {},
   "source": [
    "guardamos los dataset de train y de test\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "698a98ca",
   "metadata": {},
   "outputs": [],
   "source": [
    "train_dataset = tokenized_datasets[\"train\"]\n",
    "eval_dataset = tokenized_datasets[\"test\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "38a6c521",
   "metadata": {},
   "source": [
    "\n",
    "\n",
    "En primer lugar, vamos a crear el modelo\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "843f218d",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2023-08-29 20:57:53.276031: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 154404864 exceeds 10% of free system memory.\n",
      "2023-08-29 20:57:53.624006: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 154404864 exceeds 10% of free system memory.\n",
      "2023-08-29 20:57:53.683150: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 154404864 exceeds 10% of free system memory.\n",
      "2023-08-29 20:58:02.251496: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 154404864 exceeds 10% of free system memory.\n",
      "2023-08-29 20:58:02.566086: W tensorflow/tsl/framework/cpu_allocator_impl.cc:83] Allocation of 154404864 exceeds 10% of free system memory.\n",
      "Some weights of the PyTorch model were not used when initializing the TF 2.0 model TFRobertaForSequenceClassification: ['roberta.embeddings.position_ids']\n",
      "- This IS expected if you are initializing TFRobertaForSequenceClassification from a PyTorch model trained on another task or with another architecture (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).\n",
      "- This IS NOT expected if you are initializing TFRobertaForSequenceClassification from a PyTorch model that you expect to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a BertForSequenceClassification model).\n",
      "Some weights or buffers of the TF 2.0 model TFRobertaForSequenceClassification were not initialized from the PyTorch model and are newly initialized: ['classifier.dense.weight', 'classifier.dense.bias', 'classifier.out_proj.weight', 'classifier.out_proj.bias']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
     ]
    }
   ],
   "source": [
    "import tensorflow as tf\n",
    "from transformers import TFAutoModelForSequenceClassification\n",
    "#también tiene una clase propia para el cabezal de clasificación, en este cogemos el general\n",
    "#from transformers import TFRobertaForSequenceClassification\n",
    "#Hay dos categorías, así que ponemos 2 etiquetas (0 sano 1 tóxico)\n",
    "model = TFAutoModelForSequenceClassification.from_pretrained(\"PlanTL-GOB-ES/roberta-base-bne\", num_labels=2, from_pt=\"True\")   "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "54d206b4",
   "metadata": {},
   "source": [
    "A hora vamos a convertir los datasets tokenizados en datasets de TensorFlow con el método .to_tf_dataset. Las entradas están en columns y la etiqueta en label_cols. El bach size es el número de ejemplos que se introducen en la red para que se entrene cada vez."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "2ac843c2",
   "metadata": {},
   "outputs": [],
   "source": [
    "tf_train_dataset= train_dataset.to_tf_dataset(\n",
    "columns=[\"attention_mask\", \"input_ids\"],\n",
    "label_cols=\"labels\",\n",
    "shuffle=True,\n",
    "collate_fn=data_collator,\n",
    "batch_size=8,\n",
    ")\n",
    "tf_validation_dataset= eval_dataset.to_tf_dataset(\n",
    "columns=[\"attention_mask\", \"input_ids\"],\n",
    "label_cols=\"labels\",\n",
    "shuffle=False,\n",
    "collate_fn=data_collator,\n",
    "batch_size=8,\n",
    ")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d07f651a",
   "metadata": {},
   "source": [
    "Compilamos"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "72e85cab",
   "metadata": {},
   "outputs": [],
   "source": [
    "model.compile(\n",
    "optimizer=tf.keras.optimizers.Adam(learning_rate=5e-5),\n",
    "loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
    "metrics=tf.metrics.SparseCategoricalAccuracy(),\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f103f0de",
   "metadata": {},
   "source": [
    "## Cross-validation\n",
    "Se definen los parámetros de K-flod cross valdation en primer lugar. Al ser un dataset pequeño el nmero de \n",
    "splits será de 3."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "924886a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.model_selection import KFold\n",
    "from keras.callbacks import EarlyStopping\n",
    "num_splits = 3\n",
    "kf = KFold(num_splits, shuffle= True, random_state=42)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "651afcdb",
   "metadata": {},
   "source": [
    "\n",
    "Ahora definimos el ciclo de validación cruzada"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "f96f6bae",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Fold 1\n",
      "Epoch 1/10\n",
      "23/23 [==============================] - 1316s 52s/step - loss: 0.6939 - sparse_categorical_accuracy: 0.5506 - val_loss: 0.6605 - val_sparse_categorical_accuracy: 0.7333\n",
      "Epoch 2/10\n",
      "23/23 [==============================] - 1170s 51s/step - loss: 0.5338 - sparse_categorical_accuracy: 0.7809 - val_loss: 0.6009 - val_sparse_categorical_accuracy: 0.7222\n",
      "Epoch 3/10\n",
      "23/23 [==============================] - 1088s 47s/step - loss: 0.2613 - sparse_categorical_accuracy: 0.9101 - val_loss: 0.7153 - val_sparse_categorical_accuracy: 0.7556\n",
      "Epoch 4/10\n",
      "23/23 [==============================] - 1214s 53s/step - loss: 0.1266 - sparse_categorical_accuracy: 0.9663 - val_loss: 1.1409 - val_sparse_categorical_accuracy: 0.6111\n",
      "Train\n",
      "Fold 1 - Loss: 0.224392369389534, Accuracy: 0.9269663095474243\n",
      "Val\n",
      "Fold 1 - Loss: 0.6009274125099182, Accuracy: 0.7222222089767456\n",
      "Fold 2\n",
      "Epoch 1/10\n",
      "23/23 [==============================] - 1202s 52s/step - loss: 0.3649 - sparse_categorical_accuracy: 0.8547 - val_loss: 0.3039 - val_sparse_categorical_accuracy: 0.8989\n",
      "Epoch 2/10\n",
      "23/23 [==============================] - 1202s 53s/step - loss: 0.2095 - sparse_categorical_accuracy: 0.9385 - val_loss: 0.1956 - val_sparse_categorical_accuracy: 0.9326\n",
      "Epoch 3/10\n",
      "23/23 [==============================] - 1183s 52s/step - loss: 0.1031 - sparse_categorical_accuracy: 0.9665 - val_loss: 0.1776 - val_sparse_categorical_accuracy: 0.9213\n",
      "Epoch 4/10\n",
      "23/23 [==============================] - 1230s 54s/step - loss: 0.0676 - sparse_categorical_accuracy: 0.9832 - val_loss: 0.1551 - val_sparse_categorical_accuracy: 0.9326\n",
      "Epoch 5/10\n",
      "23/23 [==============================] - 1094s 48s/step - loss: 0.0161 - sparse_categorical_accuracy: 0.9944 - val_loss: 0.1954 - val_sparse_categorical_accuracy: 0.9438\n",
      "Epoch 6/10\n",
      "23/23 [==============================] - 925s 40s/step - loss: 0.0053 - sparse_categorical_accuracy: 1.0000 - val_loss: 0.2280 - val_sparse_categorical_accuracy: 0.9326\n",
      "Train\n",
      "Fold 2 - Loss: 0.01458701491355896, Accuracy: 0.994413435459137\n",
      "Val\n",
      "Fold 2 - Loss: 0.15508417785167694, Accuracy: 0.932584285736084\n",
      "Fold 3\n",
      "Epoch 1/10\n",
      "23/23 [==============================] - 830s 36s/step - loss: 0.1665 - sparse_categorical_accuracy: 0.9441 - val_loss: 0.0837 - val_sparse_categorical_accuracy: 0.9888\n",
      "Epoch 2/10\n",
      "23/23 [==============================] - 665s 29s/step - loss: 0.0383 - sparse_categorical_accuracy: 0.9888 - val_loss: 0.0101 - val_sparse_categorical_accuracy: 1.0000\n",
      "Epoch 3/10\n",
      "23/23 [==============================] - 674s 29s/step - loss: 0.0777 - sparse_categorical_accuracy: 0.9888 - val_loss: 0.1603 - val_sparse_categorical_accuracy: 0.9551\n",
      "Epoch 4/10\n",
      "23/23 [==============================] - 623s 27s/step - loss: 0.1500 - sparse_categorical_accuracy: 0.9609 - val_loss: 0.3123 - val_sparse_categorical_accuracy: 0.8764\n",
      "Train\n",
      "Fold 3 - Loss: 0.07668939232826233, Accuracy: 0.9776536226272583\n",
      "Val\n",
      "Fold 3 - Loss: 0.010059510357677937, Accuracy: 1.0\n"
     ]
    },
    {
     "ename": "NameError",
     "evalue": "name 'np' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[9], line 52\u001b[0m\n\u001b[1;32m     49\u001b[0m     val_accuracies\u001b[38;5;241m.\u001b[39mappend(val_scores[\u001b[38;5;241m1\u001b[39m])\n\u001b[1;32m     51\u001b[0m \u001b[38;5;66;03m#Calcular las medidas de las métricas\u001b[39;00m\n\u001b[0;32m---> 52\u001b[0m mean_train_loss \u001b[38;5;241m=\u001b[39m \u001b[43mnp\u001b[49m\u001b[38;5;241m.\u001b[39mmean(train_losses)\n\u001b[1;32m     53\u001b[0m mean_train_accuracy \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mmean(train_accuracies)\n\u001b[1;32m     54\u001b[0m mean_val_loss \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mmean(val_losses)\n",
      "\u001b[0;31mNameError\u001b[0m: name 'np' is not defined"
     ]
    }
   ],
   "source": [
    "#listas para almacenar las métricas en cada fold\n",
    "train_losses=[]\n",
    "train_accuracies=[]\n",
    "val_losses = []\n",
    "val_accuracies=[]\n",
    "\n",
    "for fold, (train_index, val_index) in enumerate(kf.split(train_dataset)):\n",
    "    print (f\"Fold {fold + 1}\")\n",
    "    \n",
    "    #crear conjuntos de entrenamiento y validación para esta iteración\n",
    "    train_fold_dataset = train_dataset.select(train_index)\n",
    "    val_fold_dataset = train_dataset.select(val_index)\n",
    "           \n",
    "    #convertir los datasets a Tensorflow\n",
    "    tf_train_fold_dataset= train_fold_dataset.to_tf_dataset(\n",
    "        columns=[\"attention_mask\", \"input_ids\"],\n",
    "        label_cols=\"labels\",\n",
    "        shuffle=True,\n",
    "        collate_fn=data_collator,\n",
    "        batch_size=8,\n",
    "        )\n",
    "           \n",
    "    tf_val_fold_dataset= val_fold_dataset.to_tf_dataset(\n",
    "    columns=[\"attention_mask\", \"input_ids\"],\n",
    "    label_cols=\"labels\",\n",
    "    shuffle=False,\n",
    "    collate_fn=data_collator,\n",
    "    batch_size=8,\n",
    "    )\n",
    "    \n",
    "    #early-stop\n",
    "    early_stop=EarlyStopping(monitor=\"val_loss\",patience=2,mode=\"auto\", restore_best_weights=True)\n",
    "    \n",
    "    #entrenar el modelo       \n",
    "    model.fit(tf_train_fold_dataset, validation_data=tf_val_fold_dataset, epochs=10, callbacks=[early_stop])\n",
    "    \n",
    "    # Evaluar el modelo      \n",
    "    train_scores = model.evaluate(tf_train_fold_dataset, verbose=0)\n",
    "    val_scores = model.evaluate(tf_val_fold_dataset, verbose=0)\n",
    "    print(\"Train\")\n",
    "    print(f\"Fold {fold + 1} - Loss: {train_scores[0]}, Accuracy: {train_scores[1]}\")\n",
    "    print(\"Val\")\n",
    "    print(f\"Fold {fold + 1} - Loss: {val_scores[0]}, Accuracy: {val_scores[1]}\")\n",
    "    \n",
    "    # Guardamos las cifras para después hacer la media\n",
    "    train_losses.append(train_scores[0])\n",
    "    train_accuracies.append(train_scores[1])\n",
    "    val_losses.append(val_scores[0])\n",
    "    val_accuracies.append(val_scores[1])\n",
    "    \n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "4113ab57",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mean Train Loss: 0.1052229255437851, Mean Train Accuracy: 0.9663444558779398\n",
      "Mean Val Loss: 0.25535703357309103, Mean Val Accuracy: 0.8849354982376099\n"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "#Calcular las medidas de las métricas\n",
    "mean_train_loss = np.mean(train_losses)\n",
    "mean_train_accuracy = np.mean(train_accuracies)\n",
    "mean_val_loss = np.mean(val_losses)\n",
    "mean_val_accuracy = np. mean(val_accuracies)\n",
    "\n",
    "#Imprimir las medias de las métricas\n",
    "print(f\"Mean Train Loss: {mean_train_loss}, Mean Train Accuracy: {mean_train_accuracy}\")\n",
    "print(f\"Mean Val Loss: {mean_val_loss}, Mean Val Accuracy: {mean_val_accuracy}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0e0dff1a",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}