File size: 15,411 Bytes
dc6999b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "976841dc",
   "metadata": {},
   "source": [
    "## Preparación de un dataset\n",
    "\n",
    "Descargamos el dataset y lo preparamos para el entrenamiento. En el caso de ejemplo, usaremos toxic-teenage-relationships, que son frases que describen si un comporamiento es tóxico o sano. Tienen una campo de texto y un campo de etiqueta, que vale 1 si es tóxico y 0 si no lo es. Acumula 267 ejemplos de entrenamiento y 66 para testear."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "caf72aa3",
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'label': 1, 'text': 'Me mira mal por mi forma de vestir'}"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "data_files = {\"train\": \"train.csv\", \"test\": \"test.csv\"}\n",
    "dataset = load_dataset(\"toxic-teenage-relationships\", data_files=data_files, sep=\";\")\n",
    "dataset['train'][102]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "08aacc14",
   "metadata": {},
   "source": [
    "Una vez cargado el dataset, se crea un tokenizador para procesar el texto e incluir una estrategia para el padding y el truncamiento. Par poder procesar el dataset en un solo paso, se utiliza el método dataset.map para preprocesar todo el dataset.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "4a854ead",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Roberta tiene su propa clase Tokenizer\n",
    "#from transformers import AutoTokenizer\n",
    "from transformers import RobertaTokenizer\n",
    "#el modelo a utilizar es RoBERTa\n",
    "tokenizer = RobertaTokenizer.from_pretrained(\"PlanTL-GOB-ES/roberta-base-bne\")\n",
    "\n",
    "\n",
    "def tokenize_function(examples):\n",
    "    return tokenizer(examples[\"text\"], padding=\"max_length\", truncation=True)\n",
    "\n",
    "\n",
    "tokenized_datasets = dataset.map(tokenize_function, batched=True)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "eb5477cc",
   "metadata": {},
   "outputs": [],
   "source": [
    "train_dataset = tokenized_datasets[\"train\"]\n",
    "eval_dataset = tokenized_datasets[\"test\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "38a6c521",
   "metadata": {},
   "source": [
    "## Fine-tuning usando Trainer\n",
    "\n",
    "La clase trainer de Transformers permite entrenar modelos de transformers. La API del Trainer soporta varias opciones de entrenamiento y características como logging, gradient accumulation y mixed preccision"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "843f218d",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of RobertaForSequenceClassification were not initialized from the model checkpoint at PlanTL-GOB-ES/roberta-base-bne and are newly initialized: ['classifier.dense.weight', 'classifier.out_proj.bias', 'classifier.dense.bias', 'classifier.out_proj.weight']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
     ]
    }
   ],
   "source": [
    "#from transformers import AutoModelForSequenceClassification\n",
    "#también tiene una clase propia para el cabezal de clasificación\n",
    "#Hay dos categorías, así que ponemos 2 etiquetas (0 sano 1 tóxico)\n",
    "#model = AutoModelForSequenceClassification.from_pretrained(\"PlanTL-GOB-ES/roberta-base-bne\", num_labels=2)\n",
    "from transformers import RobertaForSequenceClassification\n",
    "model = RobertaForSequenceClassification.from_pretrained(\"PlanTL-GOB-ES/roberta-base-bne\", num_labels=2)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "27be3c25",
   "metadata": {},
   "source": [
    "## Hiperparámetros de entrenamiento\n",
    "\n",
    "Ahora se crea una clase TrainingArguments que contiene todos los hiperparámetros que se pueden ajustar. \n",
    "Empezamos con los hiperparámetros de entrenamiento por defecto, pero tendremos que ajustarlos para encontrar la configuración óptima.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "7f84ef1e",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Para poder evitar el overfitting, voy a añadir la clase earlystopping en el momento que se observe\n",
    "#que la pérdida se incrementa en dos epoch\n",
    "from transformers import EarlyStoppingCallback\n",
    "early_stop=EarlyStoppingCallback(early_stopping_patience=2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "f53c992d",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/mmartinez/anaconda3/envs/TFM/lib/python3.8/site-packages/transformers/optimization.py:411: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "from transformers import TrainingArguments\n",
    "from transformers import DataCollatorWithPadding, AdamW\n",
    "# para controlar las métricas de evaluación durante el fine-tuning\n",
    "# vamos a añadir que elija el mejor modelo al final, usamos load_best_model_at_end que cogerá eval_loss para evaluar\n",
    "# para que se fije en el valor de loss como la mejor métrica, hay que poner greater_is_better a false.\n",
    "#vamos a poner el número de epoch a 10 y el del batch a 8\n",
    "\n",
    "training_args = TrainingArguments(output_dir=\"RoBERTa-t-MMG\",\n",
    "                                  num_train_epochs=10,\n",
    "                                  per_device_train_batch_size=8,\n",
    "                                  per_device_eval_batch_size=8,\n",
    "                                 load_best_model_at_end=True,\n",
    "                                 greater_is_better=False,\n",
    "                                 evaluation_strategy=\"epoch\",\n",
    "                                 save_strategy=\"epoch\")\n",
    "#optmizador\n",
    "optimizer=AdamW(model.parameters(), lr=5e-5)\n",
    "#añado el data Collator, que en este caso va a ser parte del trainer.\n",
    "#este es el indicado específicamente para tareas de clasificación de texto, agrupa y preprocesa\n",
    "#para que todos los ejemplos de entrada en lotes tengan la misma longitud además del tokenizdor\n",
    "#agrupación en lotes y creación de mapas de atención.\n",
    "#usando la función .map, no es estrictamente necesario pero así se combinan las características\n",
    "#adicionales del texto antes de pasarle el datacollator.\n",
    "data_collator = DataCollatorWithPadding(tokenizer)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6d604727",
   "metadata": {},
   "source": [
    "## Métricas\n",
    "\n",
    "El Trainer no evalúa automátiamentee el rendimiento, hay que pasarle una función para calcular y hacer un reporte de las métricas. En Datasets hay una función, accuracy, que se puede cargar con load_metric. \n",
    "Antes hay que instalar scikit-learn"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "0ed3ddf4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: scikit-learn in /home/mmartinez/anaconda3/envs/TFM/lib/python3.8/site-packages (1.3.0)\n",
      "Requirement already satisfied: numpy>=1.17.3 in /home/mmartinez/anaconda3/envs/TFM/lib/python3.8/site-packages (from scikit-learn) (1.24.3)\n",
      "Requirement already satisfied: scipy>=1.5.0 in /home/mmartinez/anaconda3/envs/TFM/lib/python3.8/site-packages (from scikit-learn) (1.10.1)\n",
      "Requirement already satisfied: joblib>=1.1.1 in /home/mmartinez/anaconda3/envs/TFM/lib/python3.8/site-packages (from scikit-learn) (1.3.1)\n",
      "Requirement already satisfied: threadpoolctl>=2.0.0 in /home/mmartinez/anaconda3/envs/TFM/lib/python3.8/site-packages (from scikit-learn) (3.2.0)\n",
      "Note: you may need to restart the kernel to use updated packages.\n"
     ]
    }
   ],
   "source": [
    "pip install scikit-learn"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "326103f5",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from datasets import load_metric\n",
    "\n",
    "metric = load_metric(\"accuracy\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "087d4b3e",
   "metadata": {},
   "source": [
    "Se define la función compute_metrics para calcular el accuracy de las predicciones hechas. Antes de pasar las predicciones a compute, hay que convertir las predicciones a logits (los modelos de Transformers devuelven logits)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "d7b8341d",
   "metadata": {},
   "outputs": [],
   "source": [
    "def compute_metrics(eval_pred):\n",
    "    logits, labels = eval_pred\n",
    "    predictions = np.argmax(logits, axis=-1)\n",
    "    return metric.compute(predictions=predictions, references=labels)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "53db268c",
   "metadata": {},
   "source": [
    "## Trainer\n",
    "\n",
    "Ahora es el momento de crear el objeto Trainer con el modelo, argumentos de entrenamiento, datasets de entrenamiento y de prueba, y función de evaluación:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "d566aded",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import Trainer\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=train_dataset,\n",
    "    eval_dataset=eval_dataset,\n",
    "    optimizers=(optimizer, None),\n",
    "    data_collator=data_collator,\n",
    "    compute_metrics=compute_metrics,\n",
    "    callbacks=[early_stop],\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a31780ca",
   "metadata": {},
   "source": [
    "Y se aplica fine-tunning con train"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "3e01c5fb",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='102' max='340' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [102/340 01:24 < 03:22, 1.18 it/s, Epoch 3/10]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Epoch</th>\n",
       "      <th>Training Loss</th>\n",
       "      <th>Validation Loss</th>\n",
       "      <th>Accuracy</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td>1</td>\n",
       "      <td>No log</td>\n",
       "      <td>0.419906</td>\n",
       "      <td>0.818182</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2</td>\n",
       "      <td>No log</td>\n",
       "      <td>0.541695</td>\n",
       "      <td>0.818182</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3</td>\n",
       "      <td>No log</td>\n",
       "      <td>0.485065</td>\n",
       "      <td>0.878788</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "TrainOutput(global_step=102, training_loss=0.3791993459065755, metrics={'train_runtime': 86.1528, 'train_samples_per_second': 31.108, 'train_steps_per_second': 3.946, 'total_flos': 211541288509440.0, 'train_loss': 0.3791993459065755, 'epoch': 3.0})"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "trainer.train()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "417d3cd2",
   "metadata": {},
   "source": [
    "Imprimo el loss y el accuracy"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "d1144002",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='43' max='34' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [34/34 00:11]\n",
       "    </div>\n",
       "    "
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Resultados del conjunto de train\n",
      "eval_loss. 0.2099413126707077\n",
      "eval_accuracy. 0.9402985074626866\n",
      "eval_runtime. 9.7123\n",
      "eval_samples_per_second. 27.594\n",
      "eval_steps_per_second. 3.501\n",
      "epoch. 3.0\n",
      "Resultados del conjunto de test\n",
      "eval_loss. 0.41990572214126587\n",
      "eval_accuracy. 0.8181818181818182\n",
      "eval_runtime. 2.3764\n",
      "eval_samples_per_second. 27.774\n",
      "eval_steps_per_second. 3.787\n",
      "epoch. 3.0\n"
     ]
    }
   ],
   "source": [
    "#creo una función para imprimir los resultados de una formá más visual\n",
    "def print_results(title, results):\n",
    "    print(title)\n",
    "    for key, value in results.items():\n",
    "        print(f\"{key}. {value}\")\n",
    "        \n",
    "train_result = trainer.evaluate(train_dataset)\n",
    "print_results(\"Resultados del conjunto de train\",train_result)\n",
    "eval_result = trainer.evaluate(eval_dataset)\n",
    "print_results(\"Resultados del conjunto de test\",eval_result)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9e61a040",
   "metadata": {},
   "source": [
    "# Guardando el modelo"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4af06209",
   "metadata": {},
   "source": [
    "Para Guardarlo, utilizamos esl método save_model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "b93638cb",
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer.save_model()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "973c4e03",
   "metadata": {},
   "outputs": [],
   "source": [
    "trainer.create_model_card()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9671b67c",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}