File size: 1,740 Bytes
6a60d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import Dict, List, Any

class EndpointHandler:
    def __init__(self, path=""):
        # Load the model and tokenizer
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16).to(self.device).eval()
        self.tokenizer = AutoTokenizer.from_pretrained(path)

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        # Handle the incoming request
        input_text = data["inputs"]["text"]
        template = data["inputs"]["template"]
        
        # Use the predict function
        output = self.predict_NuExtract([input_text], template)
        return [{"extracted_information": output}]

    def predict_NuExtract(self, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000):
        # Generate prompts based on the template
        template = json.dumps(json.loads(template), indent=4)
        prompts = [f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>""" for text in texts]
        outputs = []
        
        with torch.no_grad():
            for i in range(0, len(prompts), batch_size):
                batch_prompts = prompts[i:i+batch_size]
                batch_encodings = self.tokenizer(batch_prompts, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(self.device)
                pred_ids = self.model.generate(**batch_encodings, max_new_tokens=max_new_tokens)
                outputs += self.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)

        return [output.split("<|output|>")[1] for output in outputs]