File size: 16,902 Bytes
c42df27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c58e471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c42df27
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
---
license: apache-2.0
datasets:
- HuggingFaceFW/fineweb-edu
- HuggingFaceH4/MATH-500
- openai/gsm8k
language:
- en
pipeline_tag: text-generation
tags:
- mesh
- moe
- mesh-labs
- alpha
- preview
- research
- experiment
- routing
- innovative
- innovation
- mesh-moe
- custom_code
---

# Mesh-v0.1-2x2 (Stage 003)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6747320df82ae35f0327cdd3/2JPwH3coASgEc4vJvJVRt.png)

## Introducing mesh

This is our first ever model! Allow us to explain how the `mesh` architecture works in detail.

- Neural Mesh extends the concept of Mixture of Experts by allowing bidirectional expert communication.

- The experts are shared in a bidimensional grid (2x2, 4x4, etc.) layout, that allows for them to communicate with their neighbors using the "Neighbor Exchange" method.
- Just like MoE models, Mesh models have dynamic routing, and through the `routing_k` parameter you can define the amount of active parameters. For this model (2x2):
  - top-1 routing: 173M active parameters
  - top-2 routing: 242M active parameters (default)
  - dense routing: 302M active parameters

## Here's how the mesh architecture works:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6747320df82ae35f0327cdd3/WRpS2T5KBMPbacobfh0bw.png)

## How to load the model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, PretrainedConfig, PreTrainedModel
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation import GenerationMixin
import os

class MeshConfig(PretrainedConfig):
    model_type = "mesh"

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=768,
        intermediate_size=2048,
        num_hidden_layers=12,
        num_attention_heads=12,
        num_key_value_heads=12,
        max_position_embeddings=4096,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        tie_word_embeddings=False,
        mesh_grid_size=(2, 2),
        expert_intermediate_size=256,
        routing_k=2,
        neighbor_exchange_enabled=True,
        cross_expert_attention_enabled=True,
        expert_scale_factor="sqrt_k",
        load_in_8bit=False,
        load_in_4bit=False,
        **kwargs
    ):
        super().__init__(
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            intermediate_size=intermediate_size,
            num_hidden_layers=num_hidden_layers,
            num_attention_heads=num_attention_heads,
            num_key_value_heads=num_key_value_heads,
            max_position_embeddings=max_position_embeddings,
            initializer_range=initializer_range,
            rms_norm_eps=rms_norm_eps,
            use_cache=use_cache,
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )
        self.mesh_grid_size = mesh_grid_size
        self.expert_intermediate_size = kwargs.pop("expert_intermediate_size", intermediate_size // (mesh_grid_size[0] * mesh_grid_size[1]))
        self.routing_k = routing_k
        self.neighbor_exchange_enabled = neighbor_exchange_enabled
        self.cross_expert_attention_enabled = cross_expert_attention_enabled
        self.expert_scale_factor = expert_scale_factor
        self.load_in_8bit = load_in_8bit
        self.load_in_4bit = load_in_4bit

class MeshExpert(nn.Module):
    def __init__(self, config: MeshConfig):
        super().__init__()
        self.fc1 = nn.Linear(config.hidden_size, config.expert_intermediate_size)
        self.gelu = nn.GELU()
        self.fc2 = nn.Linear(config.expert_intermediate_size, config.hidden_size)

    def forward(self, x):
        return self.fc2(self.gelu(self.fc1(x)))

class MeshRouter(nn.Module):
    def __init__(self, config: MeshConfig):
        super().__init__()
        self.gate = nn.Linear(config.hidden_size, config.mesh_grid_size[0] * config.mesh_grid_size[1])
        self.softmax = nn.Softmax(dim=-1)
        self.routing_k = config.routing_k

    def forward(self, x):
        gate_scores = self.gate(x)
        gate_weights = self.softmax(gate_scores)
        topk_weights, topk_indices = torch.topk(gate_weights, self.routing_k, dim=-1)
        return topk_weights, topk_indices

class NeighborExchange(nn.Module):
    def __init__(self, config: MeshConfig):
        super().__init__()
        self.config = config
        self.num_experts_x = config.mesh_grid_size[0]
        self.num_experts_y = config.mesh_grid_size[1]
        self.num_experts = self.num_experts_x * self.num_experts_y

        self.exchange_projection = nn.Linear(config.hidden_size, config.hidden_size)

    def forward(self, expert_outputs, expert_indices=None):
        if not self.config.neighbor_exchange_enabled:
            return expert_outputs

        batch_size, seq_length, num_experts, hidden_size = expert_outputs.shape
        reshaped_outputs = expert_outputs.view(batch_size, seq_length, self.num_experts_x, self.num_experts_y, hidden_size)
        aggregated_neighbor_info = torch.zeros_like(reshaped_outputs)

        for i in range(self.num_experts_x):
            for j in range(self.num_experts_y):
                current_expert_output = reshaped_outputs[:, :, i, j, :]
                neighbor_info = torch.zeros_like(current_expert_output)
                neighbors = []
                if i > 0: neighbors.append(reshaped_outputs[:, :, i-1, j, :])
                if i < self.num_experts_x - 1: neighbors.append(reshaped_outputs[:, :, i+1, j, :])
                if j > 0: neighbors.append(reshaped_outputs[:, :, i, j-1, :])
                if j < self.num_experts_y - 1: neighbors.append(reshaped_outputs[:, :, i, j+1, :])

                if neighbors:
                    neighbor_stack = torch.stack(neighbors, dim=-2)
                    aggregated_info = torch.mean(neighbor_stack, dim=-2)
                    neighbor_info = aggregated_info

                transformed_neighbor_info = self.exchange_projection(neighbor_info)
                aggregated_neighbor_info[:, :, i, j, :] = transformed_neighbor_info

        aggregated_neighbor_info = aggregated_neighbor_info.view(batch_size, seq_length, num_experts, hidden_size)
        exchanged_expert_outputs = expert_outputs + aggregated_neighbor_info

        return exchanged_expert_outputs

class CrossExpertAttention(nn.Module):
    def __init__(self, config: MeshConfig):
        super().__init__()
        self.config = config
        self.cross_attention = nn.MultiheadAttention(
            embed_dim=config.hidden_size,
            num_heads=config.num_attention_heads,
            batch_first=True
        )

    def forward(self, expert_outputs):
        if not self.config.cross_expert_attention_enabled:
            return expert_outputs

        batch_seq_size = expert_outputs.shape[0] * expert_outputs.shape[1]
        reshaped_outputs = expert_outputs.view(batch_seq_size, self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], self.config.hidden_size)
        cross_attn_output, _ = self.cross_attention(reshaped_outputs, reshaped_outputs, reshaped_outputs)
        cross_attn_output = cross_attn_output.view(
            expert_outputs.shape[0], expert_outputs.shape[1], self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], self.config.hidden_size
        )
        return cross_attn_output

class MeshLayer(nn.Module):
    def __init__(self, config: MeshConfig):
        super().__init__()
        self.config = config
        self.router = MeshRouter(config)
        self.experts = nn.ModuleList([MeshExpert(config) for _ in range(config.mesh_grid_size[0] * config.mesh_grid_size[1])])
        self.neighbor_exchange = NeighborExchange(config)
        self.cross_expert_attention = CrossExpertAttention(config)

    def forward(self, hidden_states):
        topk_weights, topk_indices = self.router(hidden_states)
        expanded_hidden_states = hidden_states.unsqueeze(2).expand(-1, -1, self.config.mesh_grid_size[0] * self.config.mesh_grid_size[1], -1)

        if self.config.expert_scale_factor == "sqrt_k":
            scaling_factor = math.sqrt(self.config.routing_k)
            scaled_expert_inputs = expanded_hidden_states * scaling_factor
        elif self.config.expert_scale_factor == "1_over_k":
            scaling_factor = 1.0 / self.config.routing_k
            scaled_expert_inputs = expanded_hidden_states * scaling_factor
        else:
            scaled_expert_inputs = expanded_hidden_states

        expert_outputs_list = [expert(scaled_expert_inputs[:, :, i, :]) for i, expert in enumerate(self.experts)]
        expert_outputs = torch.stack(expert_outputs_list, dim=2)

        exchanged_expert_outputs = self.neighbor_exchange(expert_outputs, topk_indices)
        cross_attned_expert_outputs = self.cross_expert_attention(exchanged_expert_outputs)

        gathered_outputs = torch.gather(
            cross_attned_expert_outputs,
            dim=2,
            index=topk_indices.unsqueeze(-1).expand(-1, -1, -1, self.config.hidden_size)
        )

        combined_output = (gathered_outputs * topk_weights.unsqueeze(-1)).sum(dim=2)

        return combined_output, topk_indices

class MeshModel(PreTrainedModel, GenerationMixin):
    config_class = MeshConfig

    def __init__(self, config: MeshConfig):
        super().__init__(config)
        self.config = config
        self.embedding = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList([MeshLayer(config) for _ in range(config.num_hidden_layers)])
        self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.post_init()

        self._supports_gradient_checkpointing = True
        self.gradient_checkpointing = False

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        inputs_embeds=None,
        labels=None,
        return_dict=None,
        output_attentions=None,
        output_hidden_states=None,
        past_key_values=None,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            inputs_embeds = self.embedding(input_ids)
        elif inputs_embeds is not None:
            pass
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
             import torch.utils.checkpoint

        for i, layer in enumerate(self.layers):
            if hasattr(layer, 'forward') and callable(layer.forward):
                 if self.gradient_checkpointing and self.training:
                      checkpoint_output = torch.utils.checkpoint.checkpoint(
                          layer, hidden_states, use_reentrant=False
                      )
                      if isinstance(checkpoint_output, tuple):
                          hidden_states = checkpoint_output[0]
                      else:
                           hidden_states = checkpoint_output

                 else:
                      layer_output = layer(hidden_states)
                      hidden_states = layer_output[0]
            else:
                 print(f"Warning: Layer {i} does not have a callable forward method. Skipping layer processing.")

        hidden_states = self.norm(hidden_states)
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))

        if return_dict:
             return CausalLMOutputWithPast(
                 loss=loss,
                 logits=logits,
             )
        else:
             return (loss, logits)

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        if past_key_values is not None:
             input_ids = input_ids[:, -1].unsqueeze(-1)
             if inputs_embeds is not None:
                 inputs_embeds = inputs_embeds[:, -1, :].unsqueeze(1)

        if inputs_embeds is not None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        if "attention_mask" in kwargs:
             model_inputs["attention_mask"] = kwargs["attention_mask"]

        return model_inputs

    def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
        self.gradient_checkpointing = True
        self.config.gradient_checkpointing = True
        print("Gradient checkpointing enabled on MeshModel.")

    def gradient_checkpointing_disable(self):
         self.gradient_checkpointing = False
         self.config.gradient_checkpointing = False
         print("Gradient checkpointing disabled on MeshModel.")

    def _set_gradient_checkpointing(self, enable=True):
        if enable:
             self.gradient_checkpointing_enable()
        else:
             self.gradient_checkpointing_disable()

from transformers import AutoConfig
AutoConfig.register("mesh", MeshConfig)
AutoModelForCausalLM.register(MeshConfig, MeshModel)

HF_MERGED_REPO_STAGE003 = "mesh-labs/v0.1-2x2-stage003"

loaded_model_stage003 = None
loaded_tokenizer_stage003 = None

try:
    print(f"Attempting to load Stage 003 merged model from HF: {HF_MERGED_REPO_STAGE003}...")
    device_map = "auto"

    loaded_model_stage003 = AutoModelForCausalLM.from_pretrained(
        HF_MERGED_REPO_STAGE003,
        trust_remote_code=True,
        device_map=device_map,
        torch_dtype=torch.float32
    )

    if torch.cuda.is_available():
        loaded_model_stage003.to('cuda')
        print("Stage 003 merged model moved to GPU.")
    else:
        print("Stage 003 merged model loaded on CPU.")

    loaded_tokenizer_stage003 = AutoTokenizer.from_pretrained(
        HF_MERGED_REPO_STAGE003,
        trust_remote_code=True,
        use_fast=False
    )

    print("Stage 003 merged model and tokenizer loaded successfully from Hugging Face Hub.")

except Exception as e:
    print(f"Error loading Stage 003 merged model or tokenizer from Hugging Face Hub: {e}")
    loaded_model_stage003 = None
    loaded_tokenizer_stage003 = None

if loaded_model_stage003 is not None and loaded_tokenizer_stage003 is not None:
    print("\n--- Starting Chat Interface ---")
    print("Type your message and press Enter. Type 'quit' to exit.")

    loaded_model_stage003.eval()

    while True:
        try:
            user_input = input("You: ")
            if user_input.lower() == 'quit':
                break

            prompt = f"Question: {user_input}\nAnswer:"

            inputs = loaded_tokenizer_stage003(prompt, return_tensors="pt")

            if torch.cuda.is_available():
                inputs = {k: v.to('cuda') for k, v in inputs.items()}

            with torch.no_grad():
                outputs = loaded_model_stage003.generate(
                    **inputs,
                    max_new_tokens=128,
                    num_beams=1,
                    do_sample=False,
                )

            generated_sequence = loaded_tokenizer_stage003.decode(outputs[0], skip_special_tokens=True)

            answer_prefix = "Answer:"
            answer_start_index = generated_sequence.find(answer_prefix)

            if answer_start_index != -1:
                generated_answer = generated_sequence[answer_start_index + len(answer_prefix):].strip()
            else:
                print("Warning: 'Answer:' prefix not found in generated text. Showing full generated sequence.")
                generated_answer = generated_sequence.strip()

            print("Model:", generated_answer)

        except Exception as e:
            print(f"An error occurred: {e}")
            print("Please try again or type 'quit' to exit.")

else:
    print("\nModel or tokenizer not loaded. Cannot start chat interface.")
```

## Disclaimer
This small language model is just a proof-of-concept, paving the way to the final release, which is likely to happen in Q4 2025, and include more models and better support from external libraries such as Transformers and Llama.cpp.