File size: 5,186 Bytes
bfcc507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import tensorflow as tf
from tensorflow import keras
from keras import layers
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
from PIL import Image

def create_model(input_shape=(32, 32, 3)):
    """Create and return a CNN model for binary image classification."""
    model = keras.Sequential([
        layers.Input(shape=input_shape),  # Proper input layer specification
        layers.Conv2D(32, (3, 3), activation='relu'),
        layers.MaxPooling2D((2, 2)),
        layers.Conv2D(64, (3, 3), activation='relu'),
        layers.MaxPooling2D((2, 2)),
        layers.Conv2D(128, (3, 3), activation='relu'),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(128, activation='relu'),
        layers.Dense(1, activation='sigmoid')
    ])

    # Compile the model
    model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
    return model

def train_model(batch_size=32, epochs=8):
    """Train the model and save it."""
    # Generate data for training and validation
    datagen = ImageDataGenerator(
        rescale=1.0 / 255,
        validation_split=0.2,
        rotation_range=20,      # Add data augmentation
        width_shift_range=0.2,
        height_shift_range=0.2,
        shear_range=0.2,
        zoom_range=0.2,
        horizontal_flip=True
    )

    train_generator = datagen.flow_from_directory(
        directory='archive/train',
        target_size=(32, 32),
        batch_size=batch_size,
        class_mode='binary',
        subset='training'
    )

    validation_generator = datagen.flow_from_directory(
        directory='archive/train',
        target_size=(32, 32),
        batch_size=batch_size,
        class_mode='binary',
        subset='validation'
    )

    # Create model
    model = create_model()

    # Add early stopping to prevent overfitting
    early_stopping = keras.callbacks.EarlyStopping(
        monitor='val_loss',
        patience=3,
        restore_best_weights=True
    )

    # Train the model
    history = model.fit(
        train_generator,
        validation_data=validation_generator,
        epochs=epochs,
        callbacks=[early_stopping]
    )

    # Evaluate the model
    test_loss, test_acc = model.evaluate(validation_generator)
    print(f'Test accuracy: {test_acc:.4f}')

    # Save the model
    model.save('trained_model.keras')
    print("Model saved as 'trained_model.keras'")

    return model, history

def load_and_preprocess_image(image_path, target_size=(32, 32)):
    """Load and preprocess an image for prediction."""
    try:
        img = Image.open(image_path)
        img = img.resize(target_size)
        img = img.convert('RGB')
        img_array = np.array(img) / 255.0
        return np.expand_dims(img_array, axis=0)
    except Exception as e:
        print(f"Error processing image: {e}")
        return None

def test_model(model_path='trained_model.keras'):
    """Load a trained model and use it to classify an image."""
    try:
        # Load the trained model
        model = tf.keras.models.load_model(model_path)
    except Exception as e:
        print(f"Error loading model: {e}")
        return

    # Path to the image to test
    image_path = input('Enter the path to the image you want to test: ')

    if not os.path.isfile(image_path):
        print("Invalid path, please enter a valid path to an image.")
        return

    # Load and preprocess the image
    input_image = load_and_preprocess_image(image_path)
    if input_image is None:
        return

    # Predict the class of the image
    prediction = model.predict(input_image, verbose=0)

    # Define the threshold for classification
    threshold = 0.5

    # Classify the image
    classification = "REAL" if prediction[0][0] > threshold else "FAKE"
    confidence = prediction[0][0] if prediction[0][0] > threshold else 1 - prediction[0][0]

    # Print the result
    print(f"Classification: {classification}")
    print(f"Confidence: {confidence * 100:.2f}%")
    print(f"Raw prediction value: {prediction[0][0]:.4f}")

def main():
    """Main function to run the program."""
    # Set memory growth to avoid memory allocation errors
    gpus = tf.config.experimental.list_physical_devices('GPU')
    if gpus:
        try:
            for gpu in gpus:
                tf.config.experimental.set_memory_growth(gpu, True)
        except RuntimeError as e:
            print(f"Error setting memory growth: {e}")

    # Define hyperparameters
    batch_size = 32
    epochs = 10

    while True:
        activation_mode = input('Select mode (train/test/exit): ').lower()

        if activation_mode == 'train':
            train_model(batch_size, epochs)
        elif activation_mode == 'test':
            test_model()
        elif activation_mode == 'exit':
            print("Exiting program.")
            break
        else:
            print('Invalid mode, please select "train", "test", or "exit"')

if __name__ == "__main__":
    main()