File size: 20,464 Bytes
6a177ad
 
 
 
 
37ba7a2
6a177ad
 
 
 
 
965a52c
6a177ad
37ba7a2
 
6a177ad
 
37ba7a2
 
6a177ad
 
 
 
 
 
 
 
37ba7a2
6a177ad
 
 
 
 
 
 
 
 
 
37ba7a2
 
6a177ad
37ba7a2
6a177ad
37ba7a2
 
6a177ad
37ba7a2
 
6a177ad
 
 
 
 
37ba7a2
 
 
 
6a177ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ba7a2
6a177ad
 
 
 
 
 
 
 
 
 
 
37ba7a2
6a177ad
965a52c
 
6a177ad
 
965a52c
 
6a177ad
 
37ba7a2
6a177ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ba7a2
 
 
 
 
6a177ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# coding=utf-8
# Copyright 2025 Microsoft, EleutherAI, and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0.

from typing import Optional, Tuple, Union
import torch
from torch import nn
from transformers import PreTrainedModel, PretrainedConfig
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.cache_utils import DynamicCache
from transformers.activations import ACT2FN

# BitNetConfig
class BitNetConfig(PretrainedConfig):
    model_type = "bitnet"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=128256,
        hidden_size=2560,
        intermediate_size=6912,
        num_hidden_layers=30,
        num_attention_heads=20,
        num_key_value_heads=5,
        hidden_act="relu2",
        max_position_embeddings=2048,
        initializer_range=0.02,
        rms_norm_eps=1e-5,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=128000,
        eos_token_id=128001,
        tie_word_embeddings=False,
        rope_theta=500000.0,
        attention_bias=False,
        attention_dropout=0.0,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads or num_attention_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

# BitNetRMSNorm
class BitNetRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

# BitNetMLP
class BitNetMLP(nn.Module):
    def __init__(self, config: BitNetConfig):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]
        self.ffn_sub_norm = BitNetRMSNorm(config.intermediate_size, eps=config.rms_norm_eps)

    def forward(self, x):
        down_proj = self.down_proj(self.ffn_sub_norm(self.act_fn(self.gate_proj(x)) * self.up_proj(x)))
        return down_proj

# Utility Functions
def rotate_half(x):
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)

def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed

def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)

def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)
    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask
    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()
    return attn_output, attn_weights

# BitNetAttention
class BitNetAttention(nn.Module):
    def __init__(self, config: BitNetConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = config.hidden_size // config.num_attention_heads
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        self.is_causal = True
        self.q_proj = nn.Linear(
            config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
        )
        self.k_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        self.v_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        self.o_proj = nn.Linear(
            config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
        )
        self.attn_sub_norm = BitNetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[DynamicCache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]
        hidden_shape = (*input_shape, -1, self.head_dim)
        query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
        if past_key_value is not None:
            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
        attn_output, attn_weights = eager_attention_forward(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
        )
        attn_output = attn_output.reshape(*input_shape, -1).contiguous()
        attn_output = self.attn_sub_norm(attn_output)
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights

# BitNetDecoderLayer
class BitNetDecoderLayer(nn.Module):
    def __init__(self, config: BitNetConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = BitNetAttention(config=config, layer_idx=layer_idx)
        self.mlp = BitNetMLP(config)
        self.input_layernorm = BitNetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = BitNetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[DynamicCache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states, self_attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            **kwargs,
        )
        hidden_states = residual + hidden_states
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        outputs = (hidden_states,)
        if output_attentions:
            outputs += (self_attn_weights,)
        return outputs

# BitNetRotaryEmbedding
class BitNetRotaryEmbedding(nn.Module):
    def __init__(self, config: BitNetConfig, device=None):
        super().__init__()
        self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.config = config
        dim = config.hidden_size // config.num_attention_heads
        inv_freq = 1.0 / (config.rope_theta ** (torch.arange(0, dim, 2, dtype=torch.float, device=device) / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    def forward(self, x, position_ids):
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
        position_ids_expanded = position_ids[:, None, :].float()
        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()
        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)

# BitNetModel
class BitNetModel(PreTrainedModel):
    config_class = BitNetConfig
    supports_gradient_checkpointing = True
    _no_split_modules = ["BitNetDecoderLayer"]

    def __init__(self, config: BitNetConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [BitNetDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = BitNetRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = BitNetRotaryEmbedding(config=config)
        self.gradient_checkpointing = False
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[DynamicCache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> BaseModelOutputWithPast:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()
        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)
        causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values)
        hidden_states k= inputs_embeds
        position_embeddings = self.rotary_emb(hidden_states, position_ids)
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=causal_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=output_attentions,
                use_cache=use_cache,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
            )
            hidden_states = layer_outputs[0]
            if output_attentions:
                all_self_attns += (layer_outputs[1],)
        hidden_states = self.norm(hidden_states)
        if output_hidden_states:
            all_hidden_states += (hidden_states,)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

    def _update_causal_mask(
        self,
        attention_mask: Optional[torch.Tensor],
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Optional[DynamicCache],
    ):
        dtype, device = input_tensor.dtype, input_tensor.device
        sequence_length = input_tensor.shape[1]
        target_length = past_key_values.get_seq_length() + sequence_length + 1 if past_key_values else sequence_length + 1
        min_dtype = torch.finfo(dtype).min
        causal_mask = torch.full(
            (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
        )
        if sequence_length != 1:
            causal_mask = torch.triu(causal_mask, diagonal=1)
        causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
        causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
        if attention_mask is not None:
            causal_mask = causal_mask.clone()
            mask_length = attention_mask.shape[-1]
            padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device)
            padding_mask = padding_mask == 0
            causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(padding_mask, min_dtype)
        return causal_mask

# BitNetForCausalLM
class BitNetForCausalLM(PreTrainedModel):
    config_class = BitNetConfig
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = BitNetModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[DynamicCache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> CausalLMOutputWithPast:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            cache_position=cache_position,
            **kwargs,
        )
        hidden_states = outputs.last_hidden_state
        logits = self.lm_head(hidden_states)
        loss = None
        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **kwargs):
        if past_key_values is None:
            past_key_values = DynamicCache()
        cache_position = kwargs.get("cache_position", None)
        if cache_position is None:
            past_length = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(past_length, past_length + input_ids.shape[-1], device=input_ids.device)
        position_ids = cache_position.unsqueeze(0)
        if attention_mask is not None and attention_mask.shape[1] != input_ids.shape[1]:
            attention_mask = self._update_causal_mask(
                attention_mask,
                input_ids,
                cache_position,
                past_key_values
            )
        return {
            "input_ids": input_ids,
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "past_key_values": past_key_values,
            "cache_position": cache_position,
            "use_cache": kwargs.get("use_cache", True),
        }