File size: 4,603 Bytes
df9578d c6c07dc 248e35f 83e37af 248e35f 83e37af 248e35f c6c07dc 248e35f c6c07dc 248e35f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
---
tags:
- text-classification
- sentiment-analysis
- finance
- tinybert
datasets:
- financial_phrasebank
- custom-financial-news
metrics:
- accuracy
- f1
widget:
- text: "$AAPL - Apple hits record high after earnings beat"
- text: "$TSLA - Tesla misses Q2 delivery estimates"
- text: "$MSFT - Microsoft announces new Azure features"
---
# TinyBERT Financial News Sentiment Analysis
[](https://huggingface.co/your-username/your-model-name)
[](https://opensource.org/licenses/MIT)
A lightweight TinyBERT model fine-tuned for financial news sentiment analysis, achieving 89% accuracy with < 60MB model size and <50ms CPU inference latency.
## Model Details
- **Model Type:** Text Classification (Sentiment Analysis)
- **Architecture:** TinyBERT (4-layer, 312-hidden)
- **Pretrained Base:** `huawei-noah/TinyBERT_General_4L_312D`
- **Fine-tuned Dataset:** Financial news headlines with sentiment labels
- **Input:** Financial news text (max 128 tokens)
- **Output:** Sentiment classification (Negative/Neutral/Positive)
## Performance
| Metric | Value |
|--------------|--------|
| Accuracy | 89.2% |
| F1-Score | 0.87 |
| Model Size | 54.84MB|
| CPU Latency | 28ms |
| Quantized Size | 5.3MB |
## Usage
### Direct Inference with Pipeline
```python
from transformers import pipeline
classifier = pipeline(
"text-classification",
model="mikeysharma/finance-sentiment-analysis"
)
result = classifier("$TSLA - Morgan Stanley upgrades Tesla to Overweight")
print(result)
```
### Using Model & Tokenizer Directly
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("mikeysharma/finance-sentiment-analysis)
model = AutoModelForSequenceClassification.from_pretrained("mikeysharma/finance-sentiment-analysis")
inputs = tokenizer(
"$BYND - JPMorgan cuts Beyond Meat price target",
return_tensors="pt",
truncation=True,
max_length=128
)
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
print(predictions)
```
### ONNX Runtime (Optimal for Production)
```python
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("mikeysharma/finance-sentiment-analysis")
model = ORTModelForSequenceClassification.from_pretrained("mikeysharma/finance-sentiment-analysis")
inputs = tokenizer(
"Cemex shares fall after Credit Suisse downgrade",
return_tensors="pt",
truncation=True,
max_length=128
)
outputs = model(**inputs)
```
## Training Data
The model was fine-tuned on a dataset of financial news headlines with three sentiment classes:
1. **Negative**: Bearish sentiment, downgrades, losses
2. **Neutral**: Factual reporting, no strong sentiment
3. **Positive**: Bullish sentiment, upgrades, gains
Example samples:
```
$AAPL - Apple hits record high after earnings beat (Positive)
$TSLA - Tesla misses Q2 delivery estimates (Negative)
$MSFT - Microsoft announces new Azure features (Neutral)
```
## Preprocessing
Text is preprocessed with:
- Lowercasing
- Ticker symbol normalization ($AAPL → AAPL)
- URL removal
- Special character cleaning
- Truncation to 128 tokens
## Deployment
For production deployment, we recommend:
1. **ONNX Runtime** for CPU-optimized inference
2. **FastAPI** for REST API serving
3. **Docker** containerization
Example Dockerfile:
```dockerfile
FROM python:3.8-slim
WORKDIR /app
COPY . .
RUN pip install transformers optimum[onnxruntime] fastapi uvicorn
CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "8000"]
```
## Limitations
- Primarily trained on English financial news
- Performance may degrade on non-financial text
- Short-form text (headlines) works best
- May not capture nuanced sarcasm/irony
## Ethical Considerations
While useful for market analysis, this model should not be used as sole input for investment decisions. Always combine with human judgment and other data sources.
## Citation
If you use this model in your research, please cite:
```bibtex
@misc{tinybert-fin-sentiment,
author = {Mikey Sharma},
title = {Lightweight Financial News Sentiment Analysis with TinyBERT},
year = {2023},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/mikeysharma/finance-sentiment-analysis}}
}
```
---
license: mit
---
|