--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: picth_vision_checkpoint_9 results: [] --- # picth_vision_checkpoint_9 This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0592 - Accuracy: 0.9949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 12248 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | 0.0082 | 0.2501 | 3063 | 0.1660 | 0.9745 | | 0.0 | 1.2501 | 6126 | 0.0984 | 0.9867 | | 0.0476 | 2.2501 | 9189 | 0.0345 | 0.9969 | | 0.0 | 3.2498 | 12248 | 0.0592 | 0.9949 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.3.1+cu121 - Datasets 3.6.0 - Tokenizers 0.21.1