File size: 17,703 Bytes
dcc5cd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import argparse
import json
import re
import os
from functools import cache
from pathlib import Path
from typing import Iterator, List, NoReturn, Optional, Tuple, Union
import kenlm
import msgspec
import sentencepiece
from numpy.random import default_rng
from scipy.stats import norm
from tqdm import tqdm
from normalization import normalize_text
RNG = default_rng()
LANGS = ("no", "nn", "nob", "nno", "da", "sv", "is", "en")
DEFAULT_LANG = "no"
BASEPATH = Path(os.environ.get("PERPLEXITY_BASEPATH", "/nfsmounts/datastore/mimir/perplexity"))
CONFIG = {
"harmful": {
"no": {"model": BASEPATH / "kenlm" / "harmful" / "no.bin", "normalize": True},
"nn": {"model": BASEPATH / "kenlm" / "harmful" / "no.bin", "normalize": True},
"nob": {"model": BASEPATH / "kenlm" / "harmful" / "no.bin", "normalize": True},
"nno": {"model": BASEPATH / "kenlm" / "harmful" / "no.bin", "normalize": True},
"da": {"model": BASEPATH / "kenlm" / "harmful" / "da.bin", "normalize": True},
"sv": {"model": BASEPATH / "kenlm" / "harmful" / "sv.bin", "normalize": True},
"is": {"model": BASEPATH / "kenlm" / "harmful" / "is.bin", "normalize": True},
"en": {"model": BASEPATH / "kenlm" / "harmful" / "en.bin", "normalize": True},
},
"wikipedia": {
"no": {
"model": BASEPATH / "kenlm" / "wikipedia" / "no.arpa.bin",
"tokenizer": BASEPATH / "spm" / "wikipedia" / "no.sp.model",
"normalize": True
},
"nn": {
"model": BASEPATH / "kenlm" / "wikipedia" / "nn.arpa.bin",
"tokenizer": BASEPATH / "spm" / "wikipedia" / "nn.sp.model",
"normalize": True
},
"nob": {
"model": BASEPATH / "kenlm" / "wikipedia" / "no.arpa.bin",
"tokenizer": BASEPATH / "spm" / "wikipedia" / "no.sp.model",
"normalize": True
},
"nno": {
"model": BASEPATH / "kenlm" / "wikipedia" / "nn.arpa.bin",
"tokenizer": BASEPATH / "spm" / "wikipedia" / "nn.sp.model",
"normalize": True
},
"da": {
"model": BASEPATH / "kenlm" / "wikipedia" / "da.arpa.bin",
"tokenizer": BASEPATH / "spm" / "wikipedia" / "da.sp.model",
"normalize": True
},
"en": {
"model": BASEPATH / "kenlm" / "wikipedia" / "en.arpa.bin",
"tokenizer": BASEPATH / "spm" / "wikipedia" / "en.sp.model",
"normalize": True
},
"is": {
"model": BASEPATH / "kenlm" / "wikipedia" / "is.arpa.bin",
"tokenizer": BASEPATH / "spm" / "wikipedia" / "is.sp.model",
"normalize": True
},
"sv": {
"model": BASEPATH / "kenlm" / "wikipedia" / "sv.arpa.bin",
"tokenizer": BASEPATH / "spm" / "wikipedia" / "sv.sp.model",
"normalize": True
},
},
"books": {
"model": BASEPATH / "kenlm" / "books.norm.sp.arpa.bin",
"tokenizer": BASEPATH / "spm" / "books.norm.sp.model",
"normalize": True
},
"newspapers": {
"model": BASEPATH / "kenlm" / "newspapers.norm.sp.arpa.bin",
"tokenizer": BASEPATH / "spm" / "newspapers.norm.sp.model",
"normalize": True
},
"maalfrid": {
"model": BASEPATH / "kenlm" / "maalfrid.norm.sp.arpa.bin",
"tokenizer": BASEPATH / "spm" / "maalfrid.norm.sp.model",
"normalize": True
}
}
# Not used anymore, speed is almost same as naive algorithm
# class PerplexityDoc(msgspec.Struct):
# id: str
# doc_type: str
# publish_year: int
# lang_fasttext: str
# lang_fasttext_conf: Union[str, float]
# text: str
# perplexity: float | None = -1.0
# perplexity_model: str | None = None
# harmful_pp: float | None = None
# # wikipedia_pp: float | None = None
# # books_pp: float | None = None
# # newspapers_pp: float | None = None
# # maalfrid_pp: float | None = None
def should_keep(
perp: float, dist_norm: float, dist_mean: float, dist_std: float
) -> bool:
"""
Decide if a doc is to be retained based on its perplexity value
Note: set() must have been called previously
"""
p = norm.pdf(perp, loc=dist_mean, scale=dist_std) / dist_norm
return RNG.uniform() < p
def fix_language(language: str) -> str:
if language not in LANGS:
return DEFAULT_LANG
else:
return language
def pp(log_score, length):
return 10.0 ** (-log_score / length)
@cache
def load_kenlm(model: str) -> kenlm.Model:
lm_config = kenlm.Config()
lm_config.load_method = 2
return kenlm.Model(str(model), lm_config)
@cache
def load_sentencepiece(model: str) -> sentencepiece.SentencePieceProcessor:
sp = sentencepiece.SentencePieceProcessor()
sp.load(str(model))
return sp
def get_perplexity(
document: str,
model: str,
tokenizer: str=None,
normalize: bool=False
) -> float:
lines = document.split("\n")
model = load_kenlm(model)
if not lines or not model:
return 0.0
if tokenizer:
sp = load_sentencepiece(tokenizer)
doc_log_score, doc_length = 0, 0
for line in lines:
if not line:
continue
if normalize:
line = normalize_text(line)
if tokenizer:
line = " ".join(sp.encode_as_pieces(line))
log_score = model.score(line)
length = len(line.split()) + 1
doc_log_score += log_score
doc_length += length
return round(pp(doc_log_score, doc_length), 1)
def get_perplexity_local(
document: str,
model: kenlm.Model,
tokenizer: sentencepiece.SentencePieceProcessor=None,
normalize: bool=False
) -> float:
lines = document.split("\n")
if not lines or not model:
return 0.0
doc_log_score, doc_length = 0, 0
for line in lines:
if normalize:
line = normalize_text(line)
if tokenizer is not None:
line = " ".join(tokenizer.encode_as_pieces(line))
log_score = model.score(line)
length = len(line.split()) + 1
doc_log_score += log_score
doc_length += length
return round(pp(doc_log_score, doc_length), 1)
def harmful_perplexity(document: str, language: str) -> float:
params = CONFIG["harmful"][fix_lang(language)]
return get_perplexity(document=document, **params)
def wikipedia_perplexity(document: str, language: str) -> float:
params = CONFIG["wikipedia"][fix_lang(language)]
return get_perplexity(document=document, **params)
def books_perplexity(document: str) -> float:
params = CONFIG["books"]
return get_perplexity(document=document, **params)
def newspapers_perplexity(document: str) -> float:
params = CONFIG["newspapers"]
return get_perplexity(document=document, **params)
def maalfrid_perplexity(document: str) -> float:
params = CONFIG["maalfrid"]
return get_perplexity(document=document, **params)
def source_perplexities(
document: str,
language: str,
model: str | None = None,
include_harmful: bool=True) -> float:
"""Calculates all models perplexities at once"""
# Since normalization is applied to all, we normalize first and set it to False
normalized_document = "\n".join(normalize_text(line) for line in document.split("\n"))
language = fix_language(language)
if model is not None:
params = CONFIG[model]
if model == "wikipedia":
params = params[language]
params.update({"normalize": False})
perplexity = get_perplexity(document=normalized_document, **params)
perplexities = {
f"{model}_pp": perplexity,
}
else:
params = CONFIG["wikipedia"][language]
params.update({"normalize": False})
wikipedia_perplexity = get_perplexity(document=normalized_document, **params)
params = CONFIG["books"]
params.update({"normalize": False})
books_perplexity = get_perplexity(document=normalized_document, **params)
params = CONFIG["newspapers"]
params.update({"normalize": False})
newspapers_perplexity = get_perplexity(document=normalized_document, **params)
params = CONFIG["maalfrid"]
params.update({"normalize": False})
maalfrid_perplexity = get_perplexity(document=normalized_document, **params)
perplexities = {
"wikipedia_pp": wikipedia_perplexity,
"books_pp": books_perplexity,
"newspapers_pp": newspapers_perplexity,
"maalfrid_pp": maalfrid_perplexity,
}
if include_harmful:
params = CONFIG["harmful"][language]
params.update({"normalize": False})
harmful_perplexity = get_perplexity(document=normalized_document, **params)
perplexities.update({
"harmful_pp": harmful_perplexity,
})
return perplexities
def get_model_for(doc_type: str) -> (str, bool):
"""Returns model type and if it needs a language variant"""
doc_type = doc_type.split("_", 1)[0]
if "-" in doc_type:
doc_type = doc_type.split("-", 1)[-1]
if doc_type in ("book", "books"):
return "books", False
elif doc_type in ("culturax", "slimpajama", "wikipedia", "digimanus", "pg19", "hplt", "starcoder"):
return "wikipedia", True
elif doc_type in ("newspaper", "newspapers"):
return "newspapers", False
elif doc_type in ("evalueringsrapport", "lovdata", "maalfrid", "parlamint"):
return "maalfrid", False
else:
return "wikipedia", True
def preload_models_tokenizers() -> List:
print("Preloading models...", end=" ")
models = {
"books": (
load_kenlm(BASEPATH / "kenlm" / "books.norm.arpa.bin"),
load_sentencepiece(BASEPATH / "spm" / "books.norm.sp.model")
),
"newspapers": (
load_kenlm(BASEPATH / "kenlm" / "newspapers.norm.arpa.bin"),
load_sentencepiece(BASEPATH / "spm" / "newspapers.norm.sp.model")
),
"maalfrid": (
load_kenlm(BASEPATH / "kenlm" / "maalfrid.norm.arpa.bin"),
load_sentencepiece(BASEPATH / "spm" / "maalfrid.norm.sp.model")
),
}
for lang, params in CONFIG["harmful"].items():
model = load_kenlm(params["model"])
models[f"harmful-{lang}"] = model, None
for lang, params in CONFIG["wikipedia"].items():
model = load_kenlm(params["model"])
tokenizer = load_sentencepiece(params["tokenizer"])
models[f"wikipedia-{lang}"] = model, tokenizer
print("Done")
return models
# Not used anymore, speed is almost same as naive algorithm
# def process_file_binary(input_file, output_path, cutoff=None, overwrite_output=True):
# input_file = Path(input_file)
# output_file = Path(output_path) / input_file.name
# if not overwrite_output and output_file.exists():
# print(f"Skipping {output_file} as it already exists")
# return
# models = preload_models_tokenizers()
# encoder = msgspec.json.Encoder()
# decoder = msgspec.json.Decoder(PerplexityDoc)
# buffer = bytearray(64)
# with (open(output_file, 'wb') as f,
# open(input_file, 'r', encoding='utf-8') as lines):
# for line_count, line in tqdm(enumerate(lines), desc=f"Processing {input_file.name}"):
# doc = decoder.decode(line)
# if "code" not in doc.doc_type:
# # Perplexity
# model_type, needs_lang = get_model_for(doc.doc_type)
# if needs_lang:
# model_key = f"{model_type}-{fix_language(doc.lang_fasttext)}"
# else:
# model_key = model_type
# model, tokenizer = models[model_key]
# text = "\n".join(normalize_text(line) for line in doc.text.split("\n"))
# score = get_perplexity_local(
# text, model=model, tokenizer=tokenizer, normalize=False
# )
# doc.perplexity = score
# doc.perplexity_model = model_type
# # Harmfulness
# harmful_key = f"harmful-{fix_language(doc.lang_fasttext)}"
# harmful_model, harmful_tokenizer = models[harmful_key]
# harmful_pp = get_perplexity_local(
# text, model=harmful_model, tokenizer=harmful_tokenizer, normalize=False
# )
# doc.harmful_pp = harmful_pp
# encoder.encode_into(doc, buffer)
# buffer.extend(b"\n")
# f.write(buffer)
# if cutoff is not None and line_count >= cutoff:
# break
def process_file(input_file, output_path, cutoff=None, model=None, overwrite_output=True):
"""
Processes a file by reading its contents, analyzing each line for language and document type,
computing perplexities using specified models, and writing the modified content to a new file.
This function performs several steps:
1. Determines the output file path and checks for its existence if overwrite is not desired.
2. Reads the input file line by line, processing each line as a separate JSON document.
3. For each document, identifies its language using a fastText model. If the document type is "starcoder",
it defaults the language to English.
4. Depending on the model parameter, computes perplexities for the document text either using a
single document type model or a specified general model.
5. Updates the document with computed perplexities and writes it to the output file in JSON format.
6. Optionally stops processing after a specified number of lines determined by the cutoff parameter.
Parameters:
- input_file (str or Path): Path to the input file to be processed.
- output_path (str or Path): Directory path where the output file will be saved. The output file
will have the same name as the input file.
- cutoff (int, optional): If provided, processing will stop after this number of lines. Defaults to None.
- model (str, optional): Specifies the model to use for computing perplexities. If 'single', uses a
model specific to the document's type. Otherwise, uses the model specified.
Defaults to None.
- overwrite_output (bool): If True, will overwrite the output file if it already exists. If False,
will skip processing if the output file exists. Defaults to True.
Returns:
None. Writes processed documents to an output file in the specified output path.
"""
input_file = Path(input_file)
output_file = Path(output_path) / input_file.name
if not overwrite_output and output_file.exists():
print(f"Skipping {output_file} as it already exists")
return
with (open(output_file, 'w', encoding='utf-8') as f,
open(input_file, 'r', encoding='utf-8') as lines):
for line_count, line in tqdm(enumerate(lines), desc=f"Processing {input_file.name}"):
doc = json.loads(line)
language = doc["lang_fasttext"]
if doc["doc_type"] == "starcoder":
language = "en"
if model == "single":
doc_type_model, _ = get_model_for(doc["doc_type"])
perplexities = source_perplexities(doc["text"], language, model=doc_type_model)
perplexities["perplexity"] = perplexities.pop(f"{doc_type_model}_pp")
perplexities["perplexity_model"] = doc_type_model
else:
perplexities = source_perplexities(doc["text"], language, model=model)
doc.update(perplexities)
f.write(json.dumps(doc) + "\n")
if cutoff is not None and line_count >= cutoff:
break
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Calculate perplexity values for a given JSON Lines file and output the result to a new file.')
parser.add_argument('-i', '--input_file', type=str,
help='Input file path')
parser.add_argument('-o', '--output_path', type=str,
help='Output path to write enriched file')
parser.add_argument('-c', '--cutoff', required=False, type=int,
help='Max number of lines to process')
parser.add_argument('-m', '--model', required=False, type=str,
help='Run "single" model per doc type, "all" the models, '
'or a specific model to choose from '
'"books", "wikipedia", "newspapers" or "maalfrid". '
'Defaults to "single"')
parser.add_argument('--overwrite_output',
action=argparse.BooleanOptionalAction, default=True,
help="Whether to overwrite the output file if exists.")
args = parser.parse_args()
if args.model == "single":
process_file(
args.input_file, args.output_path, args.cutoff,
model="single", overwrite_output=args.overwrite_output,
)
elif args.model in ("books", "wikipedia", "newspapers", "maalfrid"):
process_file(
args.input_file, args.output_path, args.cutoff,
model=args.model, overwrite_output=args.overwrite_output,
)
else:
process_file(
args.input_file, args.output_path, args.cutoff,
overwrite_output=args.overwrite_output,
)
|