File size: 13,253 Bytes
edbcf3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 돌반지 백일 호랑이 호랑이띠 목걸이 3.75g 토퍼없음_14k 아기목걸이 기본3푼줄 옐로우골드 출산/육아 > 유아동주얼리 > 순금돌반지
- text: '[국제금거래소] (순도99.9%) 고급 순금 돌반지 1.875g 복(福)_고급케이스 출산/육아 > 유아동주얼리 > 순금돌반지'
- text: 베블링 순금 아기 돌팔찌 첫돌 백일 돌선물 3.75g 5.625g 7.5g 11.25g 3.75g_02.Happy 100 Days_국문
가는체 출산/육아 > 유아동주얼리 > 순금주얼리
- text: 별별나라 24k 순금 돌반지 조카 첫돌 아기백일 선물 3.75g 행운의 토끼 돌반지_기본 케이스 출산/육아 > 유아동주얼리 > 순금돌반지
- text: 바 탄생석 미아방지 실버세트/ 목걸이/ 팔찌 바 탄생석 미아방지 실버목걸이_1월(Garnet)_I타입(영문 우아체) 출산/육아 > 유아동주얼리
> 주얼리세트
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0 | <ul><li>'핸드메이드 어린이 귀걸이 안아픈 귀찌 실리콘 나사형 진주볼-화이트 출산/육아 > 유아동주얼리 > 귀걸이'</li><li>'초등학생 어린이 귀걸이 귀찌 클립형 나사형 퍼플 큐빅_클립형 귀찌(무니켈) 출산/육아 > 유아동주얼리 > 귀걸이'</li><li>'어린이 초등학생 여아 귀걸이 귀찌 e513-1.미니하트퍼플 드롭_귀찌 출산/육아 > 유아동주얼리 > 귀걸이'</li></ul> |
| 4.0 | <ul><li>'미니써클 미아방지 실버세트/ 목걸이/ 팔찌 미니써클 미아방지 실버세트_J타입(영문 흘림체)_F타입(영문 바른체) 출산/육아 > 유아동주얼리 > 주얼리세트'</li><li>'겨울왕국2 엘사 눈꽃 목걸이 팔찌 반지 3종세트 출산/육아 > 유아동주얼리 > 주얼리세트'</li><li>'스키니 네모 탄생석 미아방지 실버세트/ 목걸이/ 팔찌 스키니 네모 미아방지 실버세트_1월(Garnet)_H타입(영문 볼드체) 출산/육아 > 유아동주얼리 > 주얼리세트'</li></ul> |
| 2.0 | <ul><li>'리바스골드 99.9 순금 1g/1.875g/3.75g 돌반지 금수저 순금열쇠 돌팔찌 모음전 09. 돌반지(왕관하트)_1.875g_H. 금박 폴라로이드 액자 패키지 출산/육아 > 유아동주얼리 > 순금돌반지'</li><li>'컷팅 왕관 돌반지 돌팔찌 3.75g 7.5g 11.25g 순금 자개함 보자기포장 백일반지 컷팅 왕관 돌반지 3.75g_백일 남색 리본_고급와당케이스 출산/육아 > 유아동주얼리 > 순금돌반지'</li><li>'호랑이 토끼 띠 밴드 돌반지 3.75g 순금 자개함 아기 백일반지 리본 토끼 3.75g_빨강 수국_안음기본케이스 출산/육아 > 유아동주얼리 > 순금돌반지'</li></ul> |
| 5.0 | <ul><li>'민트 핑크 하트볼체인 실버 아기미아방지팔찌 3mm볼_빨강+각인함★_14+2 (5-7세) 출산/육아 > 유아동주얼리 > 팔찌'</li><li>'스틱 바 미아방지 목걸이 팔찌 아기 아이 어린이 유아동 실버 순은 팔찌로 제작해주세요_탄생석 2월 출산/육아 > 유아동주얼리 > 팔찌'</li><li>'미아방지팔찌(14K 18K 발도장 돌팔찌 돌선물 백일선물 탄생석) 1860B 3번 고딕체_10월 핑크투어마린_18K / 사다리체인 출산/육아 > 유아동주얼리 > 팔찌'</li></ul> |
| 3.0 | <ul><li>'순금 돌팔찌 3.75g 7.5g 11.25g 8종 모음전 24k 첫돌 백일 아기 조카 선물 ⑶11.25g_⑴천사날개 출산/육아 > 유아동주얼리 > 순금주얼리'</li><li>'순금 당근 토끼띠 아기 돌목걸이 백일목걸이 3.75g 7.5g (99.9%) 순금 당근 토끼띠 아기목걸이/7.5g_색동 복주머니 팩킹_여자아기 출산/육아 > 유아동주얼리 > 순금주얼리'</li><li>'금수저 책연필 돌팔찌 7.5g 11.25g 18.75g 순금 자개함 포장 백일팔찌 금수저7.5g_첫돌 빨강 리본_고급송학자개케이스 출산/육아 > 유아동주얼리 > 순금주얼리'</li></ul> |
| 1.0 | <ul><li>'하트 데이지 14k 미아방지목걸이 18k 아기 금목걸이 여아 딸 출산/육아 > 유아동주얼리 > 목걸이/펜던트'</li><li>'실버 미아방지 목걸이 하트 탄생석 아기 돌선물 순은925 어린이날 기념 각인 조카선물 출산/육아 > 유아동주얼리 > 목걸이/펜던트'</li><li>'실버 오목코인 키즈 아기목걸이 미아방지목걸이 출산/육아 > 유아동주얼리 > 목걸이/펜던트'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bc21")
# Run inference
preds = model("[국제금거래소] (순도99.9%) 고급 순금 돌반지 1.875g 복(福)_고급케이스 출산/육아 > 유아동주얼리 > 순금돌반지")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 7 | 15.7703 | 32 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 70 |
| 1.0 | 20 |
| 2.0 | 70 |
| 3.0 | 70 |
| 4.0 | 70 |
| 5.0 | 70 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0137 | 1 | 0.4867 | - |
| 0.6849 | 50 | 0.4987 | - |
| 1.3699 | 100 | 0.3808 | - |
| 2.0548 | 150 | 0.1425 | - |
| 2.7397 | 200 | 0.053 | - |
| 3.4247 | 250 | 0.0037 | - |
| 4.1096 | 300 | 0.0001 | - |
| 4.7945 | 350 | 0.0001 | - |
| 5.4795 | 400 | 0.0001 | - |
| 6.1644 | 450 | 0.0001 | - |
| 6.8493 | 500 | 0.0 | - |
| 7.5342 | 550 | 0.0 | - |
| 8.2192 | 600 | 0.0 | - |
| 8.9041 | 650 | 0.0 | - |
| 9.5890 | 700 | 0.0 | - |
| 10.2740 | 750 | 0.0 | - |
| 10.9589 | 800 | 0.0 | - |
| 11.6438 | 850 | 0.0 | - |
| 12.3288 | 900 | 0.0 | - |
| 13.0137 | 950 | 0.0 | - |
| 13.6986 | 1000 | 0.0 | - |
| 14.3836 | 1050 | 0.0 | - |
| 15.0685 | 1100 | 0.0 | - |
| 15.7534 | 1150 | 0.0 | - |
| 16.4384 | 1200 | 0.0 | - |
| 17.1233 | 1250 | 0.0 | - |
| 17.8082 | 1300 | 0.0 | - |
| 18.4932 | 1350 | 0.0 | - |
| 19.1781 | 1400 | 0.0 | - |
| 19.8630 | 1450 | 0.0 | - |
| 20.5479 | 1500 | 0.0 | - |
| 21.2329 | 1550 | 0.0 | - |
| 21.9178 | 1600 | 0.0 | - |
| 22.6027 | 1650 | 0.0 | - |
| 23.2877 | 1700 | 0.0 | - |
| 23.9726 | 1750 | 0.0 | - |
| 24.6575 | 1800 | 0.0 | - |
| 25.3425 | 1850 | 0.0 | - |
| 26.0274 | 1900 | 0.0 | - |
| 26.7123 | 1950 | 0.0 | - |
| 27.3973 | 2000 | 0.0 | - |
| 28.0822 | 2050 | 0.0 | - |
| 28.7671 | 2100 | 0.0 | - |
| 29.4521 | 2150 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |