dasheng-0.6B / configuration_dasheng.py
jimbozhang's picture
Upload 3 files
ed2a3f5 verified
# coding=utf-8
# Copyright 2023-2024 Xiaomi Corporation and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Dasheng model configuration"""
from transformers import PretrainedConfig
DASHENG_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"mispeech/dasheng-base": "https://huggingface.co/mispeech/dasheng-base/resolve/main/config.json",
"mispeech/dasheng-0.6B": "https://huggingface.co/mispeech/dasheng-0.6B/resolve/main/config.json",
"mispeech/dasheng-1.2B": "https://huggingface.co/mispeech/dasheng-1.2B/resolve/main/config.json",
}
class DashengConfig(PretrainedConfig):
model_type = "dasheng"
def __init__(
self,
name: str = "dasheng-base",
loss: str = "BCELoss",
**kwargs,
):
r"""
Configuration class for the Dasheng model.
Args:
name (str, *optional*):
Can be "dasheng-base", "dasheng-0.6B", or "dasheng-1.2B". Default to "dasheng-base".
loss (str, *optional*):
Name of the loss function to use. Can be any loss in `nn.modules.loss`. Default to "BCELoss".
kwargs (dict, *optional*):
Additional keyword arguments, see `dasheng_model.modeling_dasheng.DashengFeatureExtractor` and `dasheng_model.modeling_dasheng.AudioTransformerMAE_Encoder` for more details.
"""
super().__init__(**kwargs)
encoder_kwargs = dict(target_length=1008, patch_size=[64, 4], patch_stride=[64, 4])
if name == "dasheng-1.2B":
encoder_kwargs["embed_dim"] = 1536
encoder_kwargs["depth"] = 40
encoder_kwargs["num_heads"] = 24
elif name == "dasheng-0.6B":
encoder_kwargs["embed_dim"] = 1280
encoder_kwargs["depth"] = 32
encoder_kwargs["num_heads"] = 16
elif name == "dasheng-base":
encoder_kwargs["embed_dim"] = 768
encoder_kwargs["depth"] = 12
encoder_kwargs["num_heads"] = 12
else:
raise ValueError(f"Unrecognized model name: {name}")
self.name = name
encoder_kwargs.update((k, kwargs[k]) for k in set(kwargs).intersection(encoder_kwargs))
self.encoder_kwargs = {**encoder_kwargs, **kwargs}
self.loss = loss