Xenova HF Staff commited on
Commit
8fcd7f7
·
verified ·
1 Parent(s): db9d1fe

Update Transformers.js code snippets to V3

Browse files
Files changed (1) hide show
  1. README.md +12 -12
README.md CHANGED
@@ -2726,31 +2726,31 @@ print('similarities:', similarities)
2726
 
2727
  ### Transformers.js
2728
 
2729
- If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
2730
 
2731
- ```
2732
- npm i @xenova/transformers
2733
  ```
2734
 
2735
  You can then use the model to compute embeddings like this:
2736
 
2737
  ```javascript
2738
- import { pipeline, cos_sim } from '@xenova/transformers';
2739
 
2740
  // Create a feature extraction pipeline
2741
- const extractor = await pipeline('feature-extraction', 'mixedbread-ai/mxbai-embed-large-v1', {
2742
- quantized: false, // Comment out this line to use the quantized version
2743
  });
2744
 
2745
  // Generate sentence embeddings
2746
  const docs = [
2747
- 'Represent this sentence for searching relevant passages: A man is eating a piece of bread',
2748
- 'A man is eating food.',
2749
- 'A man is eating pasta.',
2750
- 'The girl is carrying a baby.',
2751
- 'A man is riding a horse.',
2752
  ]
2753
- const output = await extractor(docs, { pooling: 'cls' });
2754
 
2755
  // Compute similarity scores
2756
  const [source_embeddings, ...document_embeddings ] = output.tolist();
 
2726
 
2727
  ### Transformers.js
2728
 
2729
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
2730
 
2731
+ ```sh
2732
+ npm i @huggingface/transformers
2733
  ```
2734
 
2735
  You can then use the model to compute embeddings like this:
2736
 
2737
  ```javascript
2738
+ import { pipeline, cos_sim } from "@huggingface/transformers";
2739
 
2740
  // Create a feature extraction pipeline
2741
+ const extractor = await pipeline("feature-extraction", "mixedbread-ai/mxbai-embed-large-v1", {
2742
+ dtype: "fp32", // Options: "fp32", "fp16", "q8"
2743
  });
2744
 
2745
  // Generate sentence embeddings
2746
  const docs = [
2747
+ "Represent this sentence for searching relevant passages: A man is eating a piece of bread",
2748
+ "A man is eating food.",
2749
+ "A man is eating pasta.",
2750
+ "The girl is carrying a baby.",
2751
+ "A man is riding a horse.",
2752
  ]
2753
+ const output = await extractor(docs, { pooling: "cls" });
2754
 
2755
  // Compute similarity scores
2756
  const [source_embeddings, ...document_embeddings ] = output.tolist();