--- language: - code pipeline_tag: text-generation tags: - llama-2 - mlx license: llama2 base_model: codellama/CodeLlama-34b-Instruct-hf library_name: mlx --- # mlx-community/CodeLlama-34b-Instruct-hf-4bit-mlx As opposed to [mlx-community/CodeLlama-34b-Instruct-hf-4bit](https://huggingface.co/mlx-community/CodeLlama-34b-Instruct-hf-4bit), this one is converted from the base model using a newer MLX-LM version which uses newer and improved quantization and generates model in a more standard format. For context see [Issue#130](https://github.com/ml-explore/mlx-lm/issues/130) and [PR#114](https://github.com/ml-explore/mlx-lm/pull/114) of the [MLX-LM](https://github.com/ml-explore/mlx-lm) repo. This model [mlx-community/CodeLlama-34b-Instruct-hf-4bit-mlx](https://huggingface.co/mlx-community/CodeLlama-34b-Instruct-hf-4bit-mlx) was converted to MLX format from [codellama/CodeLlama-34b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf) using mlx-lm version **0.23.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/CodeLlama-34b-Instruct-hf-4bit-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```