dotw commited on
Commit
f08ff00
·
verified ·
1 Parent(s): ef5752f

Upload 16 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ v4-banner-instruct.png filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ pipeline_tag: text-generation
4
+ base_model:
5
+ - google/gemma-3-27b-it
6
+ language:
7
+ - en
8
+ - zh
9
+ - vi
10
+ - id
11
+ - th
12
+ - fil
13
+ - ta
14
+ - ms
15
+ - km
16
+ - lo
17
+ - my
18
+ - jv
19
+ - su
20
+ license: gemma
21
+ base_model_relation: finetune
22
+
23
+ ---
24
+
25
+ ![Banner!](v4-banner-instruct.png "v4-banner-instruct")
26
+
27
+ # Model Card for Gemma-SEA-LION-v4-27B-IT-mlx-4bit
28
+
29
+ <!-- Provide a quick summary of what the model is/does. -->
30
+
31
+ Last updated: 2025-09-10
32
+
33
+ **SEA-LION** is a collection of Large Language Models (LLMs) which have been pretrained and instruct-tuned
34
+ for the Southeast Asia (SEA) region.
35
+
36
+ Gemma-SEA-LION-v4-27B has undergone post-training using a QA pairs dataset in Burmese, English,
37
+ Indonesian, Khmer, Lao, Malay, Tagalog, Tamil, Thai and Vietnamese, comprising approximately 10M samples in total, to create *Gemma-SEA-LION-v4-27B-IT*.
38
+
39
+ Gemma-SEA-LION-v4-27B-IT inherits Gemma 3's:
40
+
41
+ - Large 128K context length
42
+
43
+ - Image and text understanding capabilities, including document comprehension, visual Q&A, and image-grounded reasoning
44
+
45
+ - Advanced function calling and structured outputs to allow for seamless integration into larger systems
46
+
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+
52
+ <!-- Provide a longer summary of what this model is. -->
53
+
54
+ SEA-LION stands for *Southeast Asian Languages In One Network*.
55
+
56
+ We performed post-training in English and SEA languages on Gemma-SEA-LION-v4-27B, a decoder model using the Gemma 3 architecture, to create Gemma-SEA-LION-v4-27B-IT.
57
+
58
+ For tokenization, the model employs the default tokenizer used in Gemma 3 27B IT.
59
+
60
+
61
+ - **Developed by:** Products Pillar, AI Singapore
62
+ - **Funded by:** Singapore NRF
63
+ - **Shared by:** Products Pillar, AI Singapore
64
+ - **Model type:** Decoder
65
+ - **Context length:** 128k tokens
66
+ - **Language(s) (NLP):** Burmese, English, Indonesian, Khmer, Lao, Malay, Mandarin, Tagalog, Tamil, Thai and Vietnamese
67
+ - **License:** [Gemma Terms of Use](https://ai.google.dev/gemma/terms)
68
+ - **Finetuned from model:** Gemma-SEA-LION-v4-27B
69
+
70
+ As of 25 Aug 2025, Gemma-SEA-LION-v4-27B-IT excels at Southeast Asian (SEA) tasks when compared to other open models
71
+ with fewer than 200 billion parameters and demonstrates performance comparable to that of larger and top closed models.
72
+ For detailed rankings, please refer to the [leaderboard](https://leaderboard.sea-lion.ai/).
73
+
74
+
75
+ ### Model Sources
76
+
77
+ <!-- Provide the basic links for the model. -->
78
+
79
+ - **Repository:** https://github.com/aisingapore/sealion.git
80
+
81
+
82
+ ## Uses
83
+
84
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
85
+
86
+
87
+ ### Out-of-Scope Use
88
+
89
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
90
+
91
+ The model has not been aligned for safety. Developers and users should perform their own safety
92
+ fine-tuning and related security measures. In no event shall the authors be held liable for any claims, damages, or other liabilities arising from the use of the released weights and codes.
93
+
94
+
95
+ ## Bias, Risks, and Limitations
96
+
97
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
98
+
99
+ *The model was not tested for robustness against adversarial prompting.* It is important for users to be aware that our model exhibits certain limitations that warrant consideration.
100
+ Like many LLMs, the model can hallucinate and occasionally generates irrelevant content,
101
+ introducing fictional elements that are not grounded in the provided context.
102
+ Users should also exercise caution in interpreting and validating the model's responses
103
+ due to the potential inconsistencies.
104
+
105
+ **Limitations**
106
+
107
+ In terms of vision capability, Gemma-SEA-LION-v4-27B-IT has been trained and fine-tuned exclusively on the text back-end.
108
+ As a result, its vision capabilities are expected to be comparable to those of Gemma 3 IT 27B,
109
+ and may not exhibit significant improvements or differences in this area. [🤗 google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it )
110
+
111
+
112
+
113
+
114
+ ## How to Get Started with the Model
115
+
116
+ Use the code below to get started with the model.
117
+
118
+ Use the code below to get started with the model using the 🤗 Transformers library.
119
+ ```python
120
+ from transformers import pipeline
121
+ import torch
122
+
123
+ pipe = pipeline(
124
+ "text-generation",
125
+ model="aisingapore/Gemma-SEA-LION-v4-27B-IT",
126
+ device="cuda",
127
+ torch_dtype=torch.bfloat16
128
+ )
129
+
130
+ messages = [
131
+ {
132
+ "role": "system",
133
+ "content": [{"type": "text", "text": "You are a helpful assistant."}]
134
+ },
135
+ {
136
+ "role": "user",
137
+ "content": [
138
+ {"type": "text", "text": "Write a poem on southeast asian countries in Indonesian."}
139
+ ]
140
+ }
141
+ ]
142
+
143
+ output = pipe(text=messages, max_new_tokens=200)
144
+ print(output[0]["generated_text"][-1]["content"])
145
+ ```
146
+
147
+
148
+ ## Training Details
149
+
150
+ - **Training Datasets:**
151
+ The instruction fine-tuning dataset combines our SEA-Instruct, Infinity-Instruct,
152
+ and OpenMath-Instruct 2 with open-source datasets. For the Online RL datasets, open sourced datasets such as
153
+ nvidia/Llama-Nemotron-Post-Training-Dataset (RL set) and zwhe99/DeepMath-103K were used. For alignment, rejected-chosen pairs are generated
154
+ from the target model, with the *chosen* responses obtained by rewriting and improving upon
155
+ the *rejected* outputs.
156
+ Prompt sampling is guided by a gradient-based analysis process.
157
+
158
+ ### Training Procedure
159
+
160
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
161
+
162
+ #### Training Hyperparameters
163
+
164
+ - **Training regime:**
165
+ Our post-training workflow consists of multiple stages: instruction fine-tuning,
166
+ model merging, online RL for both instruction following and math using DRGPPO,
167
+ and then followed by on-policy alignment via APO.
168
+
169
+
170
+ <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
171
+
172
+
173
+ ## Evaluation
174
+
175
+ <!-- This section describes the evaluation protocols and provides the results. -->
176
+
177
+ ### Testing Data, Factors & Metrics
178
+
179
+ #### Testing Data
180
+
181
+ <!-- This should link to a Dataset Card if possible. -->
182
+
183
+ We evaluated Gemma-SEA-LION-v4-27B-IT on general language, multi-turn chat and instruction-following capabilities.
184
+
185
+ **Testing Data**
186
+
187
+ General language capabilities
188
+
189
+ For the evaluation of general language capabilities, we employed the [SEA-HELM evaluation benchmark](https://arxiv.org/abs/2502.14301) across a variety of tasks.
190
+ These tasks include Question Answering (QA), Sentiment Analysis (Sentiment), Toxicity Detection (Toxicity), Translation in both directions (Eng>Lang & Lang>Eng),
191
+ Abstractive Summarisation (Abssum), Causal Reasoning (Causal), Natural Language Inference (NLI), Linguistic Diagnostics (LINDSEA), Cultural Knowledge (Kalahi)
192
+ and Global MMLU Lite.
193
+
194
+ Instruction-following and Multi-turn Chat
195
+
196
+ We evaluated the models on instruction-following and multi-turn chat capabilities with SEA-IFEval (based on [IFEval](https://arxiv.org/abs/2311.07911)) and SEA-MTBench (based on [MT-Bench](https://arxiv.org/abs/2306.05685)) respectively.
197
+ The two datasets were originally in English, the linguists and native speakers in the team worked together to filter, localise and translate the datasets into the respective target languages to ensure that the examples remained reasonable, meaningful and natural.
198
+
199
+
200
+ #### Factors
201
+
202
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
203
+
204
+ All evaluations were run with the model specific generation parameters defined in the model config. Each evaluation comprised of 8 runs with different seeds and the final results were averaged across these runs.
205
+
206
+ For all tasks, the model was expected to provide an answer tag from which the answer was automatically extracted. For tasks where options were provided, the answer should comprise one of the pre-defined options.
207
+
208
+ The evaluation was done zero-shot with native prompts on a sample of 100-1000 instances for each dataset.
209
+
210
+ SEA-IFEval
211
+
212
+ SEA-IFEval evaluates a model's ability to adhere to constraints provided in the prompt,
213
+ for example beginning a response with a specific word/phrase or answering with a certain number of sections.
214
+ Additionally, accuracy is normalised by the proportion of responses in the correct language
215
+ (if the model performs the task correctly but responds in the wrong language, it is judged to have failed the task).
216
+
217
+ SEA-MTBench
218
+
219
+ SEA-MTBench evaluates a model's ability to engage in multi-turn (2 turns) conversations and respond in ways that align with human needs.
220
+ We use `gpt-4.1-2025-04-14` as the judge model and compare against `gpt-4.1-2025-04-14` as the baseline model.
221
+ The metric used is the weighted win rate against the baseline model (i.e. average win rate across each category:
222
+ Math, Reasoning, STEM, Humanities, Roleplay, Writing, Extraction).
223
+
224
+
225
+ #### Metrics
226
+
227
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
228
+
229
+ The following metrics were used:
230
+ | Task | Metric |
231
+ |--------------------------------------|----------------------------------------|
232
+ | Sentiment Analysis | Accuracy |
233
+ | Extractive QA (ID, VI, TH, TA) | ChrF++ |
234
+ | MCQ-QA (TL, MY, MS) | Accuracy |
235
+ | Metaphor | Accuracy |
236
+ | Abstractive Summarisation | Rouge-L |
237
+ | Translations | MetricX-24 score (with reference) |
238
+ | Causal Reasoning | Accuracy |
239
+ | Natural Language Inference | Accuracy |
240
+ | LINDSEA | Accuracy |
241
+ | Global MMLU Lite | Accuracy |
242
+ | Kalahi | Accuracy |
243
+ | SEA-IFEval | Accuracy |
244
+ | SEA-MTBench | Win rate against a reference |
245
+ | Toxicity Detection | Accuracy |
246
+
247
+
248
+ ### Results
249
+ ![Leaderboard results on SEA-HELM snapedshot on 25 Aug 2025!](leaderboard-IT.png "Leaderboard results on SEA-HELM snapedshot on 25 Aug 2025")
250
+
251
+ For details on Gemma-SEA-LION-v4-27B-IT performance, please refer to the SEA-HELM leaderboard, [Leaderboard results on SEA-HELM](https://leaderboard.sea-lion.ai/).
252
+
253
+
254
+
255
+ ## Environmental Impact
256
+
257
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
258
+
259
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
260
+
261
+ - **Hardware Type:** Nvidia H200 140GB GPUs
262
+ - **Hours used:** 214 hrs
263
+ - **Cloud Provider:** SMC H200
264
+ - **Compute Region:** Singapore
265
+ - **Carbon Emitted:** appx. 98 kg CO2 e
266
+
267
+ ## More Information
268
+
269
+ This is the repository for the commercial instruction-tuned model.
270
+ The model has not been aligned for safety. Developers and users should perform their own safety
271
+ fine-tuning and related security measures. In no event shall the authors be held liable
272
+ for any claims, damages, or other liabilities arising from the use of the released weights and codes.
273
+
274
+ AI Singapore is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore.
275
+ Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Research Foundation or the National University of Singapore.
276
+
277
+ For more info, please contact us at sealion@aisingapore.org
278
+
279
+
280
+ ## Team
281
+
282
+ Antonyrex Sajeban, Chan Hok Teng Adwin, Cheng Zi Yi Nicholas, Choa Hsueh Mei Esther, Heng Jonathan, Huang Yuli, Hulagadri Adithya Venkatadri, Jann Railey Estrada Montalan,
283
+ Kang Siow Wei Bryan, Lau Wayne, Lee Chwan Ren, Leong Wai Yi, Leong Wei Qi, Limkonchotiwat Peerat, Muhammad Ridzuan Bin Mokhtar, Nagarajan Karthik, Ng Boon Cheong Raymond,
284
+ Ngee Chia Tai, Ngui Jian Gang, Nguyen Thanh Ngan, Ong Jin Jie Brandon, Ong Tat-Wee David, Ong Zhi Hao, Pereira Mark, Rengarajan Hamsawardhini, Susanto Yosephine,
285
+ Sutaveephamochanon Anocha, Tan Choon Meng, Tan Chor Phin Evelyn, Tan Siao Wei Jessica, Teng Kok Wai Walter, Teo Eng Sipp Leslie, Tjhi William, Yeo Yeow Tong, Yong Xianbin,
286
+ Liew Rachel, Liu Bing Jie Darius, Teo Wei Yi, Zhou Lin (NCS), Gopalakrishnan Roshan (NCS), Anda Cuahtemoc (NCS), Sri Devi Wijaya (NCS), Nandi Partha (NCS),
287
+ Elliott Chris (Google), Mohseni Mohammadreza (Google), Sharan Mayank (Google), Wei Fanny (Google), Tang Jiuqiang (Google), Xu Xiang (Google), Yu Ting (Google), Loh Michelle (Google), Mangal Saurabh (Google), Mukherjee Pratyusha (Google), Sim Stephanie (Google)
288
+
289
+
290
+ ## Contact
291
+
292
+ sealion@aisingapore.org
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{'<start_of_turn>model
46
+ '}}
47
+ {%- endif -%}
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma3ForConditionalGeneration"
4
+ ],
5
+ "boi_token_index": 255999,
6
+ "eoi_token_index": 256000,
7
+ "eos_token_id": [
8
+ 1,
9
+ 106
10
+ ],
11
+ "image_token_index": 262144,
12
+ "initializer_range": 0.02,
13
+ "mm_tokens_per_image": 256,
14
+ "model_type": "gemma3",
15
+ "quantization": {
16
+ "group_size": 32,
17
+ "bits": 4,
18
+ "mode": "affine"
19
+ },
20
+ "quantization_config": {
21
+ "group_size": 32,
22
+ "bits": 4,
23
+ "mode": "affine"
24
+ },
25
+ "text_config": {
26
+ "head_dim": 128,
27
+ "hidden_size": 5376,
28
+ "intermediate_size": 21504,
29
+ "model_type": "gemma3_text",
30
+ "num_attention_heads": 32,
31
+ "num_hidden_layers": 62,
32
+ "num_key_value_heads": 16,
33
+ "query_pre_attn_scalar": 168,
34
+ "rope_scaling": {
35
+ "factor": 8.0,
36
+ "rope_type": "linear"
37
+ },
38
+ "sliding_window": 1024,
39
+ "vocab_size": 262208
40
+ },
41
+ "torch_dtype": "bfloat16",
42
+ "transformers_version": "4.50.0.dev0"
43
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 2,
3
+ "cache_implementation": "hybrid",
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 1,
7
+ 106
8
+ ],
9
+ "pad_token_id": 0,
10
+ "top_k": 64,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.50.0.dev0"
13
+ }
leaderboard-IT.png ADDED
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91250aa4d6001761f6c10d0455f81f3a762727cbbfce0933019d7e7ee9a6ad95
3
+ size 5367727567
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25e16ac608c0f52a467efaafe23350c0c6ff8a34359ab487848d4c255f3d06b0
3
+ size 5362192950
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03af0a49226b1a11ecd774de5c71167141af2eb5febdfa0bb162b9c5264e9980
3
+ size 5364211369
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f68caacd84aa9ba3c54c5b504310d6f5a96255444fdff993d37b7792d584443
3
+ size 788790338
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
v4-banner-instruct.png ADDED

Git LFS Details

  • SHA256: b50443b763249ce283abaa6054375c90e7d3ff589976ce8a0294cbac06770312
  • Pointer size: 131 Bytes
  • Size of remote file: 505 kB