# coding=utf-8 # Copyright 2025 Antgroup and The HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch LLaDA2MoE model.""" import math import warnings from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.modeling_attn_mask_utils import ( AttentionMaskConverter, _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, ) from transformers.modeling_outputs import ( MoeModelOutputWithPast, MoeCausalLMOutputWithPast, ) from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from transformers.modeling_utils import PreTrainedModel from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13 from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from transformers.utils.import_utils import is_torch_fx_available from .configuration_llada2_moe import LLaDA2MoeConfig from transformers.generation.utils import GenerationMixin if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. # It means that the function will not be traced through and simply appear as a node in the graph. if is_torch_fx_available(): if not is_torch_greater_or_equal_than_1_13: import torch.fx _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LLaDA2MoeConfig" def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) class LLaDA2MoeRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ LLaDA2MoeRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) ALL_LAYERNORM_LAYERS.append(LLaDA2MoeRMSNorm) class LLaDA2MoeRotaryEmbedding(nn.Module): def __init__(self, config: LLaDA2MoeConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) # Keep half or full tensor for later concatenation rotary_dim = cos.shape[-1] q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:] k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:] # Apply rotary embeddings on the first half or full tensor q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin) k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin) # Concatenate back to full shape q_embed = torch.cat([q_embed, q_pass], dim=-1) k_embed = torch.cat([k_embed, k_pass], dim=-1) return q_embed, k_embed class LLaDA2MoeMLP(nn.Module): def __init__(self, config: LLaDA2MoeConfig, intermediate_size: int): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) class LLaDA2MoeGate(nn.Module): def __init__(self, config): super().__init__() self.config = config self.top_k = config.num_experts_per_tok self.num_experts = config.num_experts self.n_group = config.n_group self.topk_group = config.topk_group # topk selection algorithm self.gating_dim = config.hidden_size self.weight = nn.Parameter(torch.empty((self.num_experts, self.gating_dim))) self.routed_scaling_factor = config.routed_scaling_factor self.register_buffer("expert_bias", torch.zeros((self.num_experts))) self.reset_parameters() def reset_parameters(self) -> None: import torch.nn.init as init init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def group_limited_topk( self, scores: torch.Tensor, ): num_tokens, _ = scores.size() # Organize the experts into groups group_scores = scores.view(num_tokens, self.n_group, -1).topk(2, dim=-1)[0].sum(dim=-1) group_idx = torch.topk(group_scores, k=self.topk_group, dim=-1, sorted=False)[1] group_mask = torch.zeros_like(group_scores) group_mask.scatter_(1, group_idx, 1) # Mask the experts based on selection groups score_mask = ( group_mask.unsqueeze(-1) .expand(num_tokens, self.n_group, self.num_experts // self.n_group) .reshape(num_tokens, -1) ) masked_scores = scores.masked_fill(~score_mask.bool(), float('-inf')) probs, top_indices = torch.topk(masked_scores, k=self.top_k, dim=-1) return probs, top_indices def forward(self, hidden_states): # compute gating score hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) logits = F.linear(hidden_states.type(torch.float32), self.weight.type(torch.float32)) scores = torch.sigmoid(logits.float()).type_as(logits) scores_for_routing = scores + self.expert_bias _, topk_idx = self.group_limited_topk(scores_for_routing) scores = torch.gather(scores, dim=1, index=topk_idx).type_as(logits) topk_weight = scores / (scores.sum(dim=-1, keepdim=True) + 1e-20) if self.top_k > 1 else scores topk_weight = topk_weight * self.routed_scaling_factor return topk_idx, topk_weight, logits class LLaDA2MoeSparseMoeBlock(nn.Module): """ A mixed expert module containing shared experts. """ def __init__(self, config: LLaDA2MoeConfig): super().__init__() self.config = config self.num_experts_per_tok = config.num_experts_per_tok self._setup_experts() self.gate = LLaDA2MoeGate(config) if config.num_shared_experts is not None: self.shared_experts = LLaDA2MoeMLP( config=config, intermediate_size=config.moe_intermediate_size * config.num_shared_experts ) def _setup_experts(self): self.experts = nn.ModuleList( [ LLaDA2MoeMLP(config=self.config, intermediate_size=self.config.moe_intermediate_size) for _ in range(self.config.num_experts) ] ) def forward(self, hidden_states): identity = hidden_states bsz, seq_len, h = hidden_states.shape topk_idx, topk_weight, router_logits = self.gate(hidden_states) hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) flat_topk_idx = topk_idx.view(-1) if self.training: hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0) y = torch.empty_like(hidden_states) for i, expert in enumerate(self.experts): y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i]) y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) y = y.to(hidden_states.dtype).view(bsz, seq_len, h) else: y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(bsz, seq_len, h) if self.config.num_shared_experts is not None: y = y + self.shared_experts(identity) return y, (router_logits.view(bsz, seq_len, -1), topk_idx.view(bsz, seq_len, -1)) @torch.no_grad() def moe_infer(self, x, topk_ids, topk_weight): cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) cnts.scatter_(1, topk_ids, 1) tokens_per_expert = cnts.sum(dim=0) idxs = topk_ids.view(-1).argsort() sorted_tokens = x[idxs // topk_ids.shape[1]] sorted_tokens_shape = sorted_tokens.shape tokens_per_expert = tokens_per_expert.cpu().numpy() outputs = [] start_idx = 0 for i, num_tokens in enumerate(tokens_per_expert): end_idx = start_idx + num_tokens if num_tokens == 0: continue expert = self.experts[i] tokens_for_this_expert = sorted_tokens[start_idx:end_idx] expert_out = expert(tokens_for_this_expert) outputs.append(expert_out.to(x.device)) start_idx = end_idx outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0) new_x = torch.empty_like(outs) new_x[idxs] = outs final_out = ( new_x.view(*topk_ids.shape, -1) .type(topk_weight.dtype) .mul_(topk_weight.unsqueeze(dim=-1)) .sum(dim=1) .type(new_x.dtype) ) return final_out # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->LLaDA2Moe class LLaDA2MoeAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: LLaDA2MoeConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = config.head_dim or self.hidden_size // self.num_heads partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0 self.rope_dim = int(self.head_dim * partial_rotary_factor) self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = False self.query_key_value = nn.Linear( self.hidden_size, (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, bias=config.use_qkv_bias, ) self.query_layernorm = LLaDA2MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps) self.key_layernorm = LLaDA2MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps) self.dense = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) bsz, q_len, _ = hidden_states.size() qkv = self.query_key_value(hidden_states) qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) query_states, key_states, value_states = qkv.split( [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2 ) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) query_states = self.query_layernorm(query_states) key_states = self.key_layernorm(key_states) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) # attention_mask = None if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.dense(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->LLaDA2Moe class LLaDA2MoeFlashAttention2(LLaDA2MoeAttention): """ LLaDA2Moe flash attention module. This module inherits from `LLaDA2MoeAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # LLaDA2MoeFlashAttention2 attention does not support output_attentions if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) # overwrite attention_mask with padding_mask attention_mask = kwargs.pop("padding_mask") output_attentions = False bsz, q_len, _ = hidden_states.size() # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape qkv = self.query_key_value(hidden_states) qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) query_states, key_states, value_states = qkv.split( [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2 ) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) query_states = self.query_layernorm(query_states) key_states = self.key_layernorm(key_states) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently cast in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slow down training & inference so it is recommended to not cast the LayerNorms # in fp32. (LLaDA2MoeRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: # Handle the case where the model is quantized if hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype elif torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() else: target_dtype = self.query_key_value.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate ) attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() attn_output = self.dense(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`int`, *optional*): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) query_length (`int`): The length of the query sequence in terms of tokens. This represents the number of tokens in the `query_states` tensor along the sequence dimension. It is used to determine the effective sequence length for attention computations. """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LLaDA2MoeFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # attention_mask = None # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal ) return attn_output def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) # Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->LLaDA2Moe class LLaDA2MoeSdpaAttention(LLaDA2MoeAttention): """ LLaDA2Moe attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `LLaDA2MoeAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from LLaDA2MoeAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "LLaDA2MoeModel is using LLaDA2MoeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) bsz, q_len, _ = hidden_states.size() qkv = self.query_key_value(hidden_states) qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) query_states, key_states, value_states = qkv.split( [self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=-2 ) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) query_states = self.query_layernorm(query_states) key_states = self.key_layernorm(key_states) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) # attention_mask = None if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.attention_dropout if self.training else 0.0, # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal=self.is_causal and attention_mask is None and q_len > 1, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.dense(attn_output) return attn_output, None, past_key_value ATTENTION_CLASSES = { "eager": LLaDA2MoeAttention, "flash_attention_2": LLaDA2MoeFlashAttention2, "sdpa": LLaDA2MoeSdpaAttention, } class LLaDA2MoeDecoderLayer(nn.Module): def __init__(self, config: LLaDA2MoeConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.attention = ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = ( LLaDA2MoeSparseMoeBlock(config) if (config.num_experts is not None and layer_idx >= config.first_k_dense_replace) else LLaDA2MoeMLP(config=config, intermediate_size=config.intermediate_size) ) self.input_layernorm = LLaDA2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = LLaDA2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = False, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.attention( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, position_embeddings=position_embeddings, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) if isinstance(hidden_states, tuple): hidden_states, router_logits = hidden_states else: router_logits = None hidden_states = residual + hidden_states.to(residual.device) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) if output_router_logits: outputs += (router_logits,) return outputs LLADA2MOE_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LLaDA2MoeConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare LLaDA2Moe Model outputting raw hidden-states without any specific head on top.", LLADA2MOE_START_DOCSTRING, ) class LLaDA2MoePreTrainedModel(PreTrainedModel): config_class = LLaDA2MoeConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["LLaDA2MoeDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() LLADA2MOE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare LLaDA2Moe Model outputting raw hidden-states without any specific head on top.", LLADA2MOE_START_DOCSTRING, ) class LLaDA2MoeModel(LLaDA2MoePreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaDA2MoeDecoderLayer`] Args: config: LLaDA2MoeConfig """ def __init__(self, config: LLaDA2MoeConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [LLaDA2MoeDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._use_sdpa = config._attn_implementation == "sdpa" self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self.norm = LLaDA2MoeRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = LLaDA2MoeRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value @add_start_docstrings_to_model_forward(LLADA2MOE_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, MoeModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape[:2] elif inputs_embeds is not None: batch_size, seq_length = inputs_embeds.shape[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers." ) use_cache = False past_key_values_length = 0 if use_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values_length = past_key_values.get_usable_length(seq_length) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # TODO flash attention 2 can not support custom attention mask # if self._use_flash_attention_2: # # 2d mask is passed through the layers # attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None if self._use_sdpa and not output_attentions: # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) # embed positions hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_router_logits = () if output_router_logits else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, output_router_logits, use_cache, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, output_router_logits=output_router_logits, use_cache=use_cache, position_embeddings=position_embeddings, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) if output_router_logits and layer_outputs[-1] is not None: all_router_logits += (layer_outputs[-1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] if v is not None ) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, router_logits=all_router_logits, ) class LLaDA2MoeModelLM(LLaDA2MoePreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: LLaDA2MoeConfig): super().__init__(config) self.model = LLaDA2MoeModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.word_embeddings def set_input_embeddings(self, value): self.model.word_embeddings = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(LLADA2MOE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, MoeCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer >>> model = LLaDA2MoeForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, return_dict=return_dict, **kwargs, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None aux_loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] if output_router_logits: output = (aux_loss,) + output return (loss,) + output if loss is not None else output return MoeCausalLMOutputWithPast( loss=loss, aux_loss=aux_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, token_type_ids=None, **kwargs ): if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = ( past_key_values.get_max_length() if hasattr(past_key_values, "get_max_length") else past_key_values.get_max_cache_shape() ) else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @staticmethod def _top_k_logits(logits, k): if k is None or k <= 0: return logits else: values, _ = torch.topk(logits, k) min_values = values[..., -1, None] return torch.where( logits < min_values, torch.full_like(logits, float("-inf")), logits ) @staticmethod def _top_p_logits(logits, p): if p is None or p >= 1.0: return logits sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_mask = cumulative_probs > p sorted_mask[..., 1:] = sorted_mask[..., :-1].clone() sorted_mask[..., 0] = False mask_indices = torch.scatter( torch.full_like(logits, False, dtype=torch.bool), -1, sorted_indices, sorted_mask, ) return logits.masked_fill(mask_indices, float("-inf")) def _sample_with_temperature_topk_topp(self, logits, temperature=1.0, top_k=0, top_p=1.0): orig_shape = logits.shape[:-1] vocab_size = logits.shape[-1] logits = logits.reshape(-1, vocab_size) if temperature > 0 and temperature != 1.0: logits = logits / temperature logits = self._top_k_logits(logits, top_k) logits = self._top_p_logits(logits, top_p) probs = F.softmax(logits, dim=-1) token = torch.multinomial(probs, num_samples=1) token_prob = torch.gather(probs, -1, token) return token.view(*orig_shape), token_prob.view(*orig_shape) @staticmethod def _get_num_transfer_tokens(block_length, steps): if steps == 0: return torch.tensor([], dtype=torch.int64) base = block_length // steps remainder = block_length % steps num_transfer_tokens = torch.full((steps,), base, dtype=torch.int64) num_transfer_tokens[:remainder] += 1 return num_transfer_tokens @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, temperature: int = 0.0, block_length: int = 32, steps: int = 32, gen_length: int = 2048, top_p: Optional[int] = None, top_k: Optional[int] = None, eos_early_stop: bool = False, minimal_topk: int = 1, threshold: float = 0.95, eos_id: int = 156892, mask_id: int = 156895, ): r""" Generates tokens using a block-wise, iterative refinement strategy. This method operates differently from standard autoregressive generation. It first creates a template of the full desired length, filled with a special `mask_id`. It then processes this template in segments (`blocks`) and iteratively "denoises" or "refines" the `mask_id` tokens into actual tokens over a series of `steps` for each block. A custom block-diagonal causal attention mask ensures that generation within a block can attend to all previous blocks but not future ones. This is a specialized generation method. The quality and speed of the output are highly dependent on the interplay between `block_length`, `steps`, and `threshold`. It aims to achieve faster generation through parallel decoding within blocks, which is a departure from the token-by-token generation of standard `.generate()` methods. Parameters: inputs (`torch.Tensor`): The token sequence used as a prompt for the generation. temperature (`float`, *optional*, defaults to 0.0): The value used to module the next token probabilities. A value of 0.0 corresponds to greedy decoding. block_length (`int`, *optional*, defaults to 32): The size of each generation block. The model generates text in parallel within these blocks. This is a key parameter for controlling the granularity of the generation process. steps (`int`, *optional*, defaults to 32): The number of iterative refinement (or "denoising") steps to perform for each block. Within each block, the model will try to replace `mask_id` tokens with real tokens for this many iterations. gen_length (`int`, *optional*, defaults to 2048): The maximum number of tokens to generate, excluding the prompt. top_p (`float`, *optional*): If set to a float value between 0 and 1, only the most probable tokens with probabilities that add up to `top_p` or higher are kept for generation (nucleus sampling). top_k (`int`, *optional*): The number of highest probability vocabulary tokens to keep for top-k-filtering. eos_early_stop (`bool`, *optional*, defaults to `False`): If `True`, generation will stop as soon as a valid End-Of-Sequence token is generated and confirmed, even if `gen_length` has not been reached. minimal_topk (`int`, *optional*, defaults to 1): A parameter used to dynamically adjust the number of refinement `steps`. The effective number of steps is capped at `gen_length // minimal_topk`. threshold (`float`, *optional*, defaults to 0.95): The confidence probability threshold for accepting a sampled token. During each refinement step, a sampled token is only kept if its probability is above this threshold. If not enough tokens meet the threshold, the ones with the highest confidence are chosen. eos_id (`int`, *optional*, defaults to 156892): The token ID for the end-of-sequence token. Used for `eos_early_stop`. mask_id (`int`, *optional*, defaults to 156895): The token ID used as a placeholder for tokens that are yet to be generated. This is central to the iterative refinement algorithm. Return: `torch.Tensor`: A string containing the generated token IDs, starting after the prompt and stopping at the first `eos_id` or `gen_length`. """ steps = min(steps, gen_length // minimal_topk) input_ids = inputs.to(self.device) prompt_length = input_ids.shape[1] num_blocks = (prompt_length + gen_length + block_length - 1) // block_length total_length = num_blocks * block_length block_mask = torch.tril(torch.ones(num_blocks, num_blocks, device=self.device)) block_diffusion_attention_mask = ( block_mask.repeat_interleave(block_length, dim=0) .repeat_interleave(block_length, dim=1) .unsqueeze(0) .unsqueeze(0) ).bool() block_diffusion_attention_mask = torch.where( block_diffusion_attention_mask, 0.0, float("-inf") ).to(torch.bfloat16) position_ids = torch.arange(total_length, device=self.device).unsqueeze(0) x = torch.full((1, total_length), mask_id, dtype=torch.long, device=self.device) x[:, :prompt_length] = input_ids.clone() prompt_index_full = torch.zeros_like(x, dtype=torch.bool) prompt_index_full[:, :prompt_length] = True prefill_blocks = prompt_length // block_length denoising_steps_per_block = steps num_transfer_tokens_schedule = self._get_num_transfer_tokens( block_length, denoising_steps_per_block ) for num_block in range(prefill_blocks, num_blocks): current_window_end = (num_block + 1) * block_length cur_x = x[:, :current_window_end] cur_attn_mask = block_diffusion_attention_mask[ :, :, :current_window_end, :current_window_end ] cur_position_ids = position_ids[:, :current_window_end] for step in range(denoising_steps_per_block): active_block_mask = cur_x[:, -block_length:] == mask_id if active_block_mask.sum() == 0: break logits = self.forward( cur_x, attention_mask=cur_attn_mask, position_ids=cur_position_ids, ).logits active_logits = logits[:, -block_length:, :] x0, x0_p = self._sample_with_temperature_topk_topp( active_logits, temperature=temperature, top_k=top_k, top_p=top_p ) num_to_transfer = num_transfer_tokens_schedule[step].item() transfer_index = torch.zeros_like(x0, dtype=torch.bool) confidence = torch.where(active_block_mask, x0_p, -torch.inf) high_conf_mask = confidence[0] > threshold num_high_confidence = high_conf_mask.sum().item() if num_high_confidence >= num_to_transfer: transfer_index[0] = high_conf_mask else: _, idx = torch.topk( confidence[0], k=min(num_to_transfer, active_block_mask.sum().item()), ) transfer_index[0, idx] = True if transfer_index.any(): cur_x[:, -block_length:][transfer_index] = x0[transfer_index] if eos_early_stop and (x0[transfer_index] == eos_id).any(): eos_pos_in_x = (cur_x[0] == eos_id).nonzero(as_tuple=True) if len(eos_pos_in_x[0]) > 0: eos_pos = eos_pos_in_x[0][0].item() if (cur_x[0, prompt_length:eos_pos] != mask_id).all(): final_x = x[:, :total_length][:, : eos_pos + 1] return final_x x[:, :current_window_end] = cur_x if ( eos_id is not None and (x[0, prompt_length:current_window_end] == eos_id).any() ): break generated_answer = x[:, : prompt_length + gen_length] mask_positions = (generated_answer[0][input_ids.shape[1] :] == eos_id).nonzero( as_tuple=True )[0] if len(mask_positions) > 0: first_mask_position = mask_positions[0].item() else: first_mask_position = gen_length return generated_answer[:, input_ids.shape[1] : input_ids.shape[1] + first_mask_position + 1]