File size: 11,817 Bytes
a6dd08a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
---
license: apache-2.0
---
<h1 align="center">Metis-RISE: RL Incentivizes and SFT Enhance Multimodal Reasoning Model Learning</h1>
<h5 align="center">
[](https://arxiv.org/abs/2506.13056) [](https://github.com/MM-Thinking/Metis-RISE) [](https://github.com/tatsu-lab/stanford_alpaca/blob/main/LICENSE)
</h5>
## ๐ก Overview
We introduces **Metis-RISE** (**R**L **I**ncentivizes and **S**FT **E**nhances), a hybrid training paradigm that strategically sequences RL and SFT to significantly advance multimodal reasoning in MLLMs. By prioritizing RL-driven exploration, Metis-RISE incentivizes the model to unlock latent reasoning skills and avoids premature convergence often seen in SFT-first approaches. Subsequently, targeted SFT stages enhance these capabilities by efficiently addressing inconsistent reasoning through self-distilled trajectories and rectifying fundamental capability absence via expert knowledge injection. Metis-RISE-72B scores an average of 56.6 on the [OpenCompass Multimodal Reasoning Leaderboard](https://rank.opencompass.org.cn/leaderboard-multimodal-reasoning/?m=REALTIME), ranking tied for **fourth** on the overall leaderboard (as of June 26, 2025).
<img src="https://raw.githubusercontent.com/MM-Thinking/Metis-RISE/main/assets/framework.png" alt="Metis-RISE Framework Overview" style="width:850px; max-width:100%;">
## ๐ข News
- **[2025-06-23]** ๐ Both Metis-RISE 7B and 72B model checkpoints are now available on [๐ค HuggingFace](https://huggingface.co/collections/mmthinking/metis-rise-685cac221b6a0d9571db7f8b)!
- **[2025-06-16]** ๐ We release the technical report of Metis-RISE on [Arxiv](https://arxiv.org/abs/2506.13056)!
## ๐ Results
We evaluate both **Metis-RISE-7B** and **Metis-RISE-72B** on the comprehensive [OpenCompass Multimodal Reasoning Leaderboard](https://rank.opencompass.org.cn/leaderboard-multimodal-reasoning/?m=REALTIME). Both of them achieve state-of-the-art performance among similar-sized models, with the 72B version ranking fourth overall on the full leaderboard (as of June 26, 2025), validating the effectiveness and scalability of the Metis-RISE framework for enhancing multimodal reasoning.
<table>
<thead>
<tr>
<th align="left"><strong>Model</strong></th>
<th align="center"><strong>Avg.</strong></th>
<th align="center"><strong>MathVista</strong></th>
<th align="center"><strong>MathVision</strong></th>
<th align="center"><strong>MathVerse</strong></th>
<th align="center"><strong>DynaMath</strong></th>
<th align="center"><strong>WeMath</strong></th>
<th align="center"><strong>LogicVista</strong></th>
</tr>
</thead>
<tbody>
<tr style="background-color: #f0f0f0;">
<td colspan="8" align="center"><strong><em>Proprietary Models</em></strong></td>
</tr>
<tr>
<td>Seed1.5-VL</td>
<td align="center">73.3</td>
<td align="center">86.8</td>
<td align="center">67.3</td>
<td align="center">79.3</td>
<td align="center">56.1</td>
<td align="center">77.5</td>
<td align="center">72.7</td>
</tr>
<tr>
<td>Gemini-2.5-Pro</td>
<td align="center">72.5</td>
<td align="center">80.9</td>
<td align="center">69.1</td>
<td align="center">76.9</td>
<td align="center">56.3</td>
<td align="center">78.0</td>
<td align="center">73.8</td>
</tr>
<tr>
<td>Doubao-1.5-Pro</td>
<td align="center">61.6</td>
<td align="center">78.6</td>
<td align="center">51.5</td>
<td align="center">64.7</td>
<td align="center">44.9</td>
<td align="center">65.7</td>
<td align="center">64.2</td>
</tr>
<tr>
<td>Gemini-2.0-Pro</td>
<td align="center">56.6</td>
<td align="center">71.3</td>
<td align="center">48.1</td>
<td align="center">67.3</td>
<td align="center">43.3</td>
<td align="center">56.5</td>
<td align="center">53.2</td>
</tr>
<tr>
<td>ChatGPT-4o-202504</td>
<td align="center">54.8</td>
<td align="center">71.6</td>
<td align="center">43.8</td>
<td align="center">49.9</td>
<td align="center">48.5</td>
<td align="center">50.6</td>
<td align="center">64.4</td>
</tr>
<tr>
<td>Gemini-2.0-Flash</td>
<td align="center">50.6</td>
<td align="center">70.4</td>
<td align="center">43.6</td>
<td align="center">47.8</td>
<td align="center">42.1</td>
<td align="center">47.4</td>
<td align="center">52.3</td>
</tr>
<tr>
<td>Claude 3.7 Sonnet</td>
<td align="center">50.4</td>
<td align="center">66.8</td>
<td align="center">41.9</td>
<td align="center">46.7</td>
<td align="center">39.7</td>
<td align="center">49.3</td>
<td align="center">58.2</td>
</tr>
<tr>
<td>GLM-4v-Plus-202501</td>
<td align="center">49.2</td>
<td align="center">73.5</td>
<td align="center">51.1</td>
<td align="center">40.7</td>
<td align="center">27.5</td>
<td align="center">47.7</td>
<td align="center">54.4</td>
</tr>
<tr style="background-color: #f0f0f0;">
<td colspan="8" align="center"><strong><em>Open-source โค10B Models</em></strong></td>
</tr>
<tr>
<td>Kimi-VL-A3B-Instruct</td>
<td align="center">35.8</td>
<td align="center">66.0</td>
<td align="center">21.8</td>
<td align="center">34.1</td>
<td align="center">18.0</td>
<td align="center">32.3</td>
<td align="center">42.7</td>
</tr>
<tr>
<td>Qwen2.5-VL-7B</td>
<td align="center">40.1</td>
<td align="center">68.1</td>
<td align="center">25.4</td>
<td align="center">41.1</td>
<td align="center">21.8</td>
<td align="center">36.2</td>
<td align="center">47.9</td>
</tr>
<tr>
<td>InternVL3-8B</td>
<td align="center">41.4</td>
<td align="center">70.5</td>
<td align="center">30.0</td>
<td align="center">38.5</td>
<td align="center">25.7</td>
<td align="center">39.5</td>
<td align="center">44.5</td>
</tr>
<tr>
<td>VLAA-Thinker-7B</td>
<td align="center">42.5</td>
<td align="center">68.0</td>
<td align="center">26.4</td>
<td align="center">48.2</td>
<td align="center">22.4</td>
<td align="center">41.5</td>
<td align="center">48.5</td>
</tr>
<tr style="background-color: #e6f3ff;">
<td><strong>Metis-RISE-7B</strong></td>
<td align="center"><strong>46.4</strong></td>
<td align="center"><strong>75.8</strong></td>
<td align="center"><strong>28.7</strong></td>
<td align="center"><strong>51.0</strong></td>
<td align="center"><strong>27.7</strong></td>
<td align="center"><strong>45.2</strong></td>
<td align="center"><strong>49.7</strong></td>
</tr>
<tr style="background-color: #f0f0f0;">
<td colspan="8" align="center"><strong><em>Open-source >10B Models</em></strong></td>
</tr>
<tr>
<td>InternVL3-14B</td>
<td align="center">46.0</td>
<td align="center">74.4</td>
<td align="center">34.0</td>
<td align="center">43.7</td>
<td align="center">30.3</td>
<td align="center">41.3</td>
<td align="center">52.1</td>
</tr>
<tr>
<td>Ovis2-34B</td>
<td align="center">47.9</td>
<td align="center">76.1</td>
<td align="center">31.9</td>
<td align="center">50.1</td>
<td align="center">27.5</td>
<td align="center">51.9</td>
<td align="center">49.9</td>
</tr>
<tr>
<td>QVQ-72B-Preview</td>
<td align="center">46.9</td>
<td align="center">70.3</td>
<td align="center">34.9</td>
<td align="center">48.2</td>
<td align="center">30.7</td>
<td align="center">39.0</td>
<td align="center">58.2</td>
</tr>
<tr>
<td>LLaVA-OneVision-72B</td>
<td align="center">34.7</td>
<td align="center">67.1</td>
<td align="center">25.3</td>
<td align="center">27.2</td>
<td align="center">15.6</td>
<td align="center">32</td>
<td align="center">40.9</td>
</tr>
<tr>
<td>Qwen2.5-VL-72B</td>
<td align="center">50.3</td>
<td align="center">74.2</td>
<td align="center">39.3</td>
<td align="center">47.3</td>
<td align="center">35.9</td>
<td align="center">49.1</td>
<td align="center">55.7</td>
</tr>
<tr>
<td>InternVL3-78B</td>
<td align="center">51.0</td>
<td align="center">79.0</td>
<td align="center">38.8</td>
<td align="center">51.0</td>
<td align="center">35.1</td>
<td align="center">46.1</td>
<td align="center">55.9</td>
</tr>
<tr style="background-color: #e6f3ff;">
<td><strong>Metis-RISE-72B</strong></td>
<td align="center"><strong>56.6</strong></td>
<td align="center"><strong>80.4</strong></td>
<td align="center"><strong>42.7</strong></td>
<td align="center"><strong>59.8</strong></td>
<td align="center"><strong>42.5</strong></td>
<td align="center"><strong>55.1</strong></td>
<td align="center"><strong>58.8</strong></td>
</tr>
</tbody>
</table>
## ๐ Usage Example
Below is a simple example of how to use Metis-RISE series models for multimodal reasoning tasks:
```python
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
# Load model (choose between 7B or 72B version)
model_path = 'mmthinking/Metis-RISE-7B' # or mmthinking/Metis-RISE-72B
# Load the model on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_path, torch_dtype="auto", device_map="auto"
)
# Best practices to use the following system_prompt and pixel range by default
system_prompt = """Solve the question. The user asks a question, and you solves it. You first thinks about the reasoning process in the mind and then provides the user with the answer. The answer is in latex format and wrapped in $...$. The final answer must be wrapped using the \\boxed{} command. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> Since $1+1=2$, so the answer is $2$. </think><answer> The answer is $\\boxed{2}$ </answer>, which means assistant's output should start with <think> and end with </answer>."""
processor = AutoProcessor.from_pretrained(model_path, min_pixels=128*28*28, max_pixels=16384*28*28)
# Prepare input with image and text
messages = [
{
"role": "system",
"content": system_prompt
},
{
"role": "user",
"content": [
{
"type": "image",
"image": "assets/example_case.jpg",
},
{"type": "text", "text": "If the pattern continues, what would be the Y value when X=11?"},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=8192)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text[0])
```
## ๐ค Checkpoints
| Model |Huggingface |
| ------------ | ---------------------------------------------------------------------------------------- |
| Metis-RISE-7B | [mmthinking/Metis-RISE-7B](https://huggingface.co/mmthinking/Metis-RISE-7B) |
| Metis-RISE-72B | [mmthinking/Metis-RISE-72B](https://huggingface.co/mmthinking/Metis-RISE-72B) |
## ๐ Acknowledgement
We sincerely appreciate [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) and [MM-EUREKA](https://github.com/ModalMinds/MM-EUREKA) for providing reference training framework.
## ๐ Citation
```bibtex
@article{qiu2025metis,
title={Metis-RISE: RL Incentivizes and SFT Enhances Multimodal Reasoning Model Learning},
author={Qiu, Haibo and Lan, Xiaohan and Liu, Fanfan and Sun, Xiaohu and Ruan, Delian and Shi, Peng and Ma, Lin},
journal={arXiv preprint arXiv:2506.13056},
year={2025}
}
``` |