es-input-classifier / README.md
monentiadev's picture
Update README.md
b16a72c verified
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Plasta
- text: 203 terminada
- text: habitación 294 limpia
- text: ¡Hola, cómo va todo!
- text: Quiero ver el estado de la incidencia que reporté en la Calle Mayor de Triana.
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: jaimevera1107/all-MiniLM-L6-v2-similarity-es
---
# Input Classifier
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [jaimevera1107/all-MiniLM-L6-v2-similarity-es](https://huggingface.co/jaimevera1107/all-MiniLM-L6-v2-similarity-es) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [jaimevera1107/all-MiniLM-L6-v2-similarity-es](https://huggingface.co/jaimevera1107/all-MiniLM-L6-v2-similarity-es)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 256 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:-------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| request | <ul><li>'lencería necesaria'</li><li>'material necesario para hoy'</li><li>'terminé la habitación 234'</li></ul> |
| conversation | <ul><li>'buena noche'</li><li>'Qué pasa, tío, ¿todo bien?'</li><li>'Buenas, ¿cómo va la cosa?!'</li></ul> |
| help | <ul><li>'ayuda por favor'</li><li>'Ayuda que no sé que puedo hacer'</li><li>'Hola, que puedo hacer'</li></ul> |
| censorship | <ul><li>'Eres un completo inútil, no sirves para nada'</li><li>'Siempre diciendo estupideces, mejor cállate'</li><li>'Tu sola existencia es una vergüenza'</li></ul> |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("monentiadev/es-input-classifier")
# Run inference
preds = model("Hola")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 5.0723 | 38 |
| Label | Training Sample Count |
|:-------------|:----------------------|
| censorship | 407 |
| conversation | 137 |
| help | 274 |
| request | 552 |
### Training Hyperparameters
- batch_size: (128, 128)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0023 | 1 | 0.3161 | - |
| 0.1166 | 50 | 0.2857 | - |
| 0.2331 | 100 | 0.2158 | - |
| 0.3497 | 150 | 0.1581 | - |
| 0.4662 | 200 | 0.0878 | - |
| 0.5828 | 250 | 0.0299 | - |
| 0.6993 | 300 | 0.0124 | - |
| 0.8159 | 350 | 0.0083 | - |
| 0.9324 | 400 | 0.006 | - |
| 1.0490 | 450 | 0.0038 | - |
| 1.1655 | 500 | 0.0027 | - |
| 1.2821 | 550 | 0.0027 | - |
| 1.3986 | 600 | 0.0017 | - |
| 1.5152 | 650 | 0.0016 | - |
| 1.6317 | 700 | 0.0013 | - |
| 1.7483 | 750 | 0.0012 | - |
| 1.8648 | 800 | 0.0012 | - |
| 1.9814 | 850 | 0.001 | - |
| 2.0979 | 900 | 0.001 | - |
| 2.2145 | 950 | 0.0011 | - |
| 2.3310 | 1000 | 0.0009 | - |
| 2.4476 | 1050 | 0.0008 | - |
| 2.5641 | 1100 | 0.0009 | - |
| 2.6807 | 1150 | 0.0008 | - |
| 2.7972 | 1200 | 0.0008 | - |
| 2.9138 | 1250 | 0.0007 | - |
### Framework Versions
- Python: 3.10.0
- SetFit: 1.1.2
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.7.1+cu126
- Datasets: 2.19.2
- Tokenizers: 0.21.2
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->