|
--- |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: Plasta |
|
- text: 203 terminada |
|
- text: habitación 294 limpia |
|
- text: ¡Hola, cómo va todo! |
|
- text: Quiero ver el estado de la incidencia que reporté en la Calle Mayor de Triana. |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
library_name: setfit |
|
inference: true |
|
base_model: jaimevera1107/all-MiniLM-L6-v2-similarity-es |
|
--- |
|
|
|
# Input Classifier |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [jaimevera1107/all-MiniLM-L6-v2-similarity-es](https://huggingface.co/jaimevera1107/all-MiniLM-L6-v2-similarity-es) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [jaimevera1107/all-MiniLM-L6-v2-similarity-es](https://huggingface.co/jaimevera1107/all-MiniLM-L6-v2-similarity-es) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Number of Classes:** 4 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:-------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| request | <ul><li>'lencería necesaria'</li><li>'material necesario para hoy'</li><li>'terminé la habitación 234'</li></ul> | |
|
| conversation | <ul><li>'buena noche'</li><li>'Qué pasa, tío, ¿todo bien?'</li><li>'Buenas, ¿cómo va la cosa?!'</li></ul> | |
|
| help | <ul><li>'ayuda por favor'</li><li>'Ayuda que no sé que puedo hacer'</li><li>'Hola, que puedo hacer'</li></ul> | |
|
| censorship | <ul><li>'Eres un completo inútil, no sirves para nada'</li><li>'Siempre diciendo estupideces, mejor cállate'</li><li>'Tu sola existencia es una vergüenza'</li></ul> | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("monentiadev/es-input-classifier") |
|
# Run inference |
|
preds = model("Hola") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 1 | 5.0723 | 38 | |
|
|
|
| Label | Training Sample Count | |
|
|:-------------|:----------------------| |
|
| censorship | 407 | |
|
| conversation | 137 | |
|
| help | 274 | |
|
| request | 552 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (128, 128) |
|
- num_epochs: (3, 3) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0023 | 1 | 0.3161 | - | |
|
| 0.1166 | 50 | 0.2857 | - | |
|
| 0.2331 | 100 | 0.2158 | - | |
|
| 0.3497 | 150 | 0.1581 | - | |
|
| 0.4662 | 200 | 0.0878 | - | |
|
| 0.5828 | 250 | 0.0299 | - | |
|
| 0.6993 | 300 | 0.0124 | - | |
|
| 0.8159 | 350 | 0.0083 | - | |
|
| 0.9324 | 400 | 0.006 | - | |
|
| 1.0490 | 450 | 0.0038 | - | |
|
| 1.1655 | 500 | 0.0027 | - | |
|
| 1.2821 | 550 | 0.0027 | - | |
|
| 1.3986 | 600 | 0.0017 | - | |
|
| 1.5152 | 650 | 0.0016 | - | |
|
| 1.6317 | 700 | 0.0013 | - | |
|
| 1.7483 | 750 | 0.0012 | - | |
|
| 1.8648 | 800 | 0.0012 | - | |
|
| 1.9814 | 850 | 0.001 | - | |
|
| 2.0979 | 900 | 0.001 | - | |
|
| 2.2145 | 950 | 0.0011 | - | |
|
| 2.3310 | 1000 | 0.0009 | - | |
|
| 2.4476 | 1050 | 0.0008 | - | |
|
| 2.5641 | 1100 | 0.0009 | - | |
|
| 2.6807 | 1150 | 0.0008 | - | |
|
| 2.7972 | 1200 | 0.0008 | - | |
|
| 2.9138 | 1250 | 0.0007 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.0 |
|
- SetFit: 1.1.2 |
|
- Sentence Transformers: 5.0.0 |
|
- Transformers: 4.53.1 |
|
- PyTorch: 2.7.1+cu126 |
|
- Datasets: 2.19.2 |
|
- Tokenizers: 0.21.2 |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |