File size: 5,143 Bytes
31fd009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4161952
 
 
 
 
 
 
 
 
31fd009
 
 
 
 
3ff9656
31fd009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
562748f
31fd009
 
 
562748f
 
31fd009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
base_model: swiss-ai/Apertus-8B-Instruct-2509
extra_gated_button_content: Submit
extra_gated_fields:
  Affiliation: text
  By clicking Submit below I accept the terms of use: checkbox
  Country: country
  Your Name: text
  geo: ip_location
extra_gated_prompt: "### Apertus LLM Acceptable Use Policy  \n(1.0 | September 1,
  2025)\n\"Agreement\" The Swiss National AI Institute (SNAI) is a partnership between
  the two Swiss Federal Institutes of Technology, ETH Zurich and EPFL. \n\nBy using
  the Apertus LLM you agree to indemnify, defend, and hold harmless ETH Zurich and
  EPFL against any third-party claims arising from your use of Apertus LLM. \n\nThe
  training data and the Apertus LLM may contain or generate information that directly
  or indirectly refers to an identifiable individual (Personal Data). You process
  Personal Data as independent controller in accordance with applicable data protection
  law. SNAI will regularly provide a file with hash values for download which you
  can apply as an output filter to your use of our Apertus LLM. The file reflects
  data protection deletion requests which have been addressed to SNAI as the developer
  of the Apertus LLM. It allows you to remove Personal Data contained in the model
  output. We strongly advise downloading and applying this output filter from SNAI
  every six months following the release of the model.  "
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
  readme_rev: 1
quantized_by: mradermacher
tags:
- multilingual
- compliant
- swiss-ai
- apertus
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags:  -->
<!-- ### quants:  x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip:  -->
<!-- ### skip_mmproj:  -->
static quants of https://huggingface.co/swiss-ai/Apertus-8B-Instruct-2509

<!-- provided-files -->

***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Apertus-8B-Instruct-2509-GGUF).***

weighted/imatrix quants are available at https://huggingface.co/mradermacher/Apertus-8B-Instruct-2509-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Apertus-8B-Instruct-2509-GGUF/resolve/main/Apertus-8B-Instruct-2509.Q2_K.gguf) | Q2_K | 3.4 |  |
| [GGUF](https://huggingface.co/mradermacher/Apertus-8B-Instruct-2509-GGUF/resolve/main/Apertus-8B-Instruct-2509.Q3_K_S.gguf) | Q3_K_S | 3.8 |  |
| [GGUF](https://huggingface.co/mradermacher/Apertus-8B-Instruct-2509-GGUF/resolve/main/Apertus-8B-Instruct-2509.Q3_K_M.gguf) | Q3_K_M | 4.3 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Apertus-8B-Instruct-2509-GGUF/resolve/main/Apertus-8B-Instruct-2509.IQ4_XS.gguf) | IQ4_XS | 4.6 |  |
| [GGUF](https://huggingface.co/mradermacher/Apertus-8B-Instruct-2509-GGUF/resolve/main/Apertus-8B-Instruct-2509.Q3_K_L.gguf) | Q3_K_L | 4.7 |  |
| [GGUF](https://huggingface.co/mradermacher/Apertus-8B-Instruct-2509-GGUF/resolve/main/Apertus-8B-Instruct-2509.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Apertus-8B-Instruct-2509-GGUF/resolve/main/Apertus-8B-Instruct-2509.Q4_K_M.gguf) | Q4_K_M | 5.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Apertus-8B-Instruct-2509-GGUF/resolve/main/Apertus-8B-Instruct-2509.Q5_K_S.gguf) | Q5_K_S | 5.7 |  |
| [GGUF](https://huggingface.co/mradermacher/Apertus-8B-Instruct-2509-GGUF/resolve/main/Apertus-8B-Instruct-2509.Q5_K_M.gguf) | Q5_K_M | 5.9 |  |
| [GGUF](https://huggingface.co/mradermacher/Apertus-8B-Instruct-2509-GGUF/resolve/main/Apertus-8B-Instruct-2509.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Apertus-8B-Instruct-2509-GGUF/resolve/main/Apertus-8B-Instruct-2509.Q8_0.gguf) | Q8_0 | 8.7 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Apertus-8B-Instruct-2509-GGUF/resolve/main/Apertus-8B-Instruct-2509.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->