--- base_model: Lamapi/next-12b datasets: - mlabonne/FineTome-100k - ITCL/FineTomeOs - Gryphe/ChatGPT-4o-Writing-Prompts - dongguanting/ARPO-SFT-54K - GreenerPastures/All-Your-Base-Full - Gryphe/Opus-WritingPrompts - HuggingFaceH4/MATH-500 - mlabonne/smoltalk-flat - mlabonne/natural_reasoning-formatted - OpenSPG/KAG-Thinker-training-dataset - uclanlp/Brief-Pro - CognitiveKernel/CognitiveKernel-Pro-SFT - SuperbEmphasis/Claude-4.0-DeepSeek-R1-RP-SFWish - QuixiAI/dolphin-r1 - mlabonne/lmsys-arena-human-sft-55k language: - tr - en - de - ka - el - ku - es - sl - sk - af - da - nl - fa - fi - fr - ga - hi - hu - hy - ja - kg - kk - ko - ky - la - lb - id - it - is - za - zh - zu - cs - vi - be - bg - bs - ne - mn - rm - ro - ru - te - th - tk - tt - uk - uz - ug - pl - pt - no library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - turkish - türkiye - english - ai - lamapi - gemma3 - next - next-x1 - efficient - text-generation - open-source - 12b - huggingface - large-language-model - llm - causal - transformer - artificial-intelligence - machine-learning - ai-research - natural-language-processing - language - multilingual - multimodal - nlp - finetuned - lightweight - creative - summarization - question-answering - chat - generative-ai - optimized - unsloth - trl - sft - chemistry - code - biology - finance - legal - music - art - state-of-the-art - climate - medical - agent - text-generation-inference - merge - dense --- ## About weighted/imatrix quants of https://huggingface.co/Lamapi/next-12b ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#next-12b-i1-GGUF).*** static quants are available at https://huggingface.co/mradermacher/next-12b-GGUF **This is a vision model - mmproj files (if any) will be in the [static repository](https://huggingface.co/mradermacher/next-12b-GGUF).** ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-IQ1_S.gguf) | i1-IQ1_S | 3.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-IQ2_S.gguf) | i1-IQ2_S | 4.1 | | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-IQ2_M.gguf) | i1-IQ2_M | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 4.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-IQ3_S.gguf) | i1-IQ3_S | 5.6 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.6 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-Q4_0.gguf) | i1-Q4_0 | 7.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-Q4_1.gguf) | i1-Q4_1 | 7.7 | | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.5 | | | [GGUF](https://huggingface.co/mradermacher/next-12b-i1-GGUF/resolve/main/next-12b.i1-Q6_K.gguf) | i1-Q6_K | 9.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.