File size: 4,098 Bytes
8842543
 
 
07845fb
8842543
07845fb
1003d09
8842543
7db7e63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234348c
7db7e63
234348c
7db7e63
8842543
7db7e63
 
 
 
 
 
 
 
 
 
 
 
 
 
8842543
07845fb
8842543
7db7e63
 
 
07845fb
7db7e63
1003d09
07845fb
 
1003d09
07845fb
7db7e63
 
 
 
 
07845fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7db7e63
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
library_name: transformers
tags:
- axolotl
- generated_from_trainer
datasets:
- jondurbin/contextual-dpo-v0.1
model-index:
  - name: Tiny-Darkllama3.2-1B-Instruct-v0.2
    results:
      - task:
          type: arc_easy
        dataset:
          name: arc_easy
          type: arc_easy
        metrics:
          - name: acc
            type: accuracy
            value: 0.2622
            stderr: 0.0090
          - name: acc_norm
            type: normalized_accuracy
            value: 0.2639
            stderr: 0.0090
        source:
          name: eval-harness
          url: https://github.com/EleutherAI/lm-evaluation-harness
base_model: unsloth/Llama-3.2-1B
---

# Model Card for Tiny-Darkllama3.2-1B-Instruct-v0.2

## Model Details

- **Model Name:** Tiny-Darkllama3.2-1B-Instruct-v0.2
- **Base Model:** [unsloth/Llama-3.2-1B](https://huggingface.co/unsloth/Llama-3.2-1B)
- **Model Type:** LlamaForCausalLM
- **Training Framework:** Transformers 4.48.3
- **Training Hardware:** NVIDIA GPU with CUDA 12.4

## Training Data

- **Dataset:** [jondurbin/contextual-dpo-v0.1](https://huggingface.co/datasets/jondurbin/contextual-dpo-v0.1)
- **Training Split:** train

## Training Procedure

### Hyperparameters

- **Learning Rate:** 0.0002
- **Optimizer:** AdamW
- **LR Scheduler:** Linear
- **Batch Size:** 1
- **Gradient Accumulation Steps:** 1
- **Max Steps:** 20
- **Epochs:** 4
- **Warmup Steps:** 10
- **Weight Decay:** 0.0
- **Sequence Length:** 1096

### Training Configuration

- **Gradient Checkpointing:** Enabled
- **Sample Packing:** Enabled
- **Pad to Sequence Length:** True
- **Flash Attention:** Disabled
- **FP16/BF16:** Disabled
- **DeepSpeed/FSDP:** Not used

## Evaluation

### Results

- **ARC Easy Dataset:**
  - Accuracy: 0.2622
  - Standard Error: 0.0090
  - Normalized Accuracy: 0.2639
  - Normalized Standard Error: 0.0090

## Usage

This model is designed for instruction-following tasks and can be used for various natural language processing applications. It is fine-tuned using the DPO (Direct Preference Optimization) method on the contextual-dpo dataset.

## Limitations

- The model's performance may vary depending on the specific task and dataset.
- Fine-tuning on additional datasets may be required for optimal performance on specific tasks.

## Citation

If you use this model in your research, please cite the original Llama model and the Axolotl training framework.

## License

This model is licensed under the terms of the [License Name](link-to-license).

## Contact

For more information, please contact [Your Contact Information].

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)

<details>
<summary>See Axolotl Config</summary>
  
```yaml
axolotl version: '0.6.0'
base_model: mrcuddle/tiny-darkllama3.2-1B
bf16: false
dataset_prepared_path: last_run_prepared
rl: dpo
datasets:
  - path: jondurbin/contextual-dpo-v0.1
    field_messages: prompt
    field_chosen: chosen
    field_rejected: rejected
    split: train
debug: null
deepspeed: null
early_stopping_patience: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: false
hub_model_id: mrcuddle/Tiny-Darkllama3.2-1B-Instruct
is_llama_derived_model: true
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lr_scheduler: linear
max_steps: 20
micro_batch_size: 1
mlflow_experiment_name: colab-example
model_type: LlamaForCausalLM
num_epochs: 4
optimizer: adamw_torch
output_dir: ./llama2
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: null
sequence_len: 1096
special_tokens: null
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details>