File size: 3,680 Bytes
ae49d2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
library_name: peft
base_model: mtzig/prm800k_llama_debug_full
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: v3c_llama_lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# v3c_llama_lora
This model is a fine-tuned version of [mtzig/prm800k_llama_debug_full](https://huggingface.co/mtzig/prm800k_llama_debug_full) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4195
- Accuracy: 0.8128
- Precision: 0.7778
- Recall: 0.42
- F1: 0.5455
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 765837
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log | 0 | 0 | 0.6173 | 0.7487 | 1.0 | 0.06 | 0.1132 |
| 0.3808 | 0.0492 | 40 | 0.5695 | 0.7487 | 0.8 | 0.08 | 0.1455 |
| 0.3036 | 0.0984 | 80 | 0.4816 | 0.7647 | 0.6364 | 0.28 | 0.3889 |
| 0.305 | 0.1476 | 120 | 0.4852 | 0.8021 | 0.7241 | 0.42 | 0.5316 |
| 0.256 | 0.1967 | 160 | 0.4328 | 0.8021 | 0.7826 | 0.36 | 0.4932 |
| 0.2062 | 0.2459 | 200 | 0.4699 | 0.7861 | 0.75 | 0.3 | 0.4286 |
| 0.2004 | 0.2951 | 240 | 0.4480 | 0.7807 | 0.7143 | 0.3 | 0.4225 |
| 0.2241 | 0.3443 | 280 | 0.4449 | 0.7807 | 0.7143 | 0.3 | 0.4225 |
| 0.1505 | 0.3935 | 320 | 0.4088 | 0.8182 | 0.75 | 0.48 | 0.5854 |
| 0.1752 | 0.4427 | 360 | 0.4386 | 0.7861 | 0.75 | 0.3 | 0.4286 |
| 0.2382 | 0.4919 | 400 | 0.4186 | 0.8128 | 0.7778 | 0.42 | 0.5455 |
| 0.238 | 0.5410 | 440 | 0.4313 | 0.7914 | 0.7391 | 0.34 | 0.4658 |
| 0.1448 | 0.5902 | 480 | 0.4161 | 0.8128 | 0.7778 | 0.42 | 0.5455 |
| 0.2096 | 0.6394 | 520 | 0.4251 | 0.7968 | 0.75 | 0.36 | 0.4865 |
| 0.204 | 0.6886 | 560 | 0.4413 | 0.7914 | 0.7391 | 0.34 | 0.4658 |
| 0.1545 | 0.7378 | 600 | 0.4312 | 0.7968 | 0.75 | 0.36 | 0.4865 |
| 0.1883 | 0.7870 | 640 | 0.4288 | 0.8021 | 0.76 | 0.38 | 0.5067 |
| 0.2403 | 0.8362 | 680 | 0.4288 | 0.8021 | 0.76 | 0.38 | 0.5067 |
| 0.1937 | 0.8853 | 720 | 0.4245 | 0.8021 | 0.76 | 0.38 | 0.5067 |
| 0.164 | 0.9345 | 760 | 0.4182 | 0.8075 | 0.7692 | 0.4 | 0.5263 |
| 0.2185 | 0.9837 | 800 | 0.4195 | 0.8128 | 0.7778 | 0.42 | 0.5455 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3 |