File size: 5,474 Bytes
71ef320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
library_name: peft
base_model: peiyi9979/math-shepherd-mistral-7b-prm
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: v4_mistral_lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# v4_mistral_lora

This model is a fine-tuned version of [peiyi9979/math-shepherd-mistral-7b-prm](https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2886
- Accuracy: 0.8631
- Precision: 0.8457
- Recall: 0.6260
- F1: 0.7195

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 8
- seed: 89234
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 3
- total_train_batch_size: 72
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| No log        | 0      | 0    | 0.5995          | 0.7340   | 0.6       | 0.1535 | 0.2445 |
| 0.7266        | 0.0251 | 20   | 0.5909          | 0.7384   | 0.6232    | 0.1693 | 0.2663 |
| 0.674         | 0.0502 | 40   | 0.5497          | 0.7517   | 0.6526    | 0.2441 | 0.3553 |
| 0.5187        | 0.0753 | 60   | 0.4896          | 0.7759   | 0.6409    | 0.4567 | 0.5333 |
| 0.4811        | 0.1004 | 80   | 0.4410          | 0.7958   | 0.7066    | 0.4646 | 0.5606 |
| 0.2811        | 0.1255 | 100  | 0.4249          | 0.8102   | 0.7595    | 0.4724 | 0.5825 |
| 0.2959        | 0.1506 | 120  | 0.3751          | 0.8212   | 0.7674    | 0.5197 | 0.6197 |
| 0.336         | 0.1757 | 140  | 0.3764          | 0.8278   | 0.8451    | 0.4724 | 0.6061 |
| 0.3239        | 0.2008 | 160  | 0.3608          | 0.8201   | 0.8421    | 0.4409 | 0.5788 |
| 0.2767        | 0.2259 | 180  | 0.3362          | 0.8543   | 0.8112    | 0.6260 | 0.7067 |
| 0.276         | 0.2510 | 200  | 0.3406          | 0.8389   | 0.8462    | 0.5197 | 0.6439 |
| 0.2715        | 0.2762 | 220  | 0.3223          | 0.8411   | 0.8274    | 0.5472 | 0.6588 |
| 0.2737        | 0.3013 | 240  | 0.3202          | 0.8521   | 0.8125    | 0.6142 | 0.6996 |
| 0.3245        | 0.3264 | 260  | 0.3098          | 0.8466   | 0.8249    | 0.5748 | 0.6775 |
| 0.2868        | 0.3515 | 280  | 0.3159          | 0.8433   | 0.7887    | 0.6024 | 0.6830 |
| 0.2601        | 0.3766 | 300  | 0.3105          | 0.8587   | 0.7669    | 0.7126 | 0.7388 |
| 0.2597        | 0.4017 | 320  | 0.3162          | 0.8510   | 0.8362    | 0.5827 | 0.6868 |
| 0.287         | 0.4268 | 340  | 0.2997          | 0.8532   | 0.8071    | 0.6260 | 0.7051 |
| 0.3115        | 0.4519 | 360  | 0.3028          | 0.8543   | 0.8315    | 0.6024 | 0.6986 |
| 0.2654        | 0.4770 | 380  | 0.3008          | 0.8543   | 0.8245    | 0.6102 | 0.7014 |
| 0.2443        | 0.5021 | 400  | 0.2955          | 0.8565   | 0.8039    | 0.6457 | 0.7162 |
| 0.2743        | 0.5272 | 420  | 0.3011          | 0.8543   | 0.8389    | 0.5945 | 0.6959 |
| 0.2248        | 0.5523 | 440  | 0.3031          | 0.8532   | 0.8380    | 0.5906 | 0.6928 |
| 0.2149        | 0.5774 | 460  | 0.2868          | 0.8609   | 0.7991    | 0.6732 | 0.7308 |
| 0.1998        | 0.6025 | 480  | 0.2975          | 0.8587   | 0.8316    | 0.6220 | 0.7117 |
| 0.2459        | 0.6276 | 500  | 0.2978          | 0.8510   | 0.8324    | 0.5866 | 0.6882 |
| 0.1953        | 0.6527 | 520  | 0.2989          | 0.8576   | 0.8492    | 0.5984 | 0.7021 |
| 0.3153        | 0.6778 | 540  | 0.2864          | 0.8642   | 0.8359    | 0.6417 | 0.7261 |
| 0.2172        | 0.7029 | 560  | 0.3190          | 0.8444   | 0.8844    | 0.5118 | 0.6484 |
| 0.2604        | 0.7280 | 580  | 0.2830          | 0.8687   | 0.8358    | 0.6614 | 0.7385 |
| 0.2671        | 0.7531 | 600  | 0.2970          | 0.8565   | 0.8523    | 0.5906 | 0.6977 |
| 0.2049        | 0.7782 | 620  | 0.2862          | 0.8587   | 0.8316    | 0.6220 | 0.7117 |
| 0.2972        | 0.8033 | 640  | 0.2890          | 0.8609   | 0.8404    | 0.6220 | 0.7149 |
| 0.1953        | 0.8285 | 660  | 0.2911          | 0.8609   | 0.8441    | 0.6181 | 0.7136 |
| 0.24          | 0.8536 | 680  | 0.2824          | 0.8653   | 0.8367    | 0.6457 | 0.7289 |
| 0.282         | 0.8787 | 700  | 0.2860          | 0.8631   | 0.8385    | 0.6339 | 0.7220 |
| 0.1931        | 0.9038 | 720  | 0.2885          | 0.8620   | 0.8413    | 0.6260 | 0.7178 |
| 0.2251        | 0.9289 | 740  | 0.2898          | 0.8631   | 0.8457    | 0.6260 | 0.7195 |
| 0.178         | 0.9540 | 760  | 0.2889          | 0.8631   | 0.8457    | 0.6260 | 0.7195 |
| 0.2431        | 0.9791 | 780  | 0.2886          | 0.8631   | 0.8457    | 0.6260 | 0.7195 |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3