File size: 13,666 Bytes
788c379 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import os
import pickle
import shutil
from typing import Dict, Iterable, List, Optional, Sequence, Tuple
from huggingface_hub import hf_hub_download, snapshot_download
from huggingface_hub.utils import HfHubHTTPError
from transformers import PreTrainedTokenizer
class _BaseNanoGPTTokenizer:
"""Lightweight wrapper used by the base (non-chat) checkpoints."""
special_tokens = {
"bos": "<|bos|>",
"user_start": "<|user_start|>",
"user_end": "<|user_end|>",
"assistant_start": "<|assistant_start|>",
"assistant_end": "<|assistant_end|>",
"python_start": "<|python_start|>",
"python_end": "<|python_end|>",
"output_start": "<|output_start|>",
"output_end": "<|output_end|>",
}
def __init__(self, enc):
self.enc = enc
self.bos_token_id = enc.encode_single_token(self.special_tokens["bos"])
@classmethod
def register_for_auto_class(cls, auto_class="AutoTokenizer"):
pass
@classmethod
def _load_encoding(cls, pretrained_model_name_or_path, **kwargs):
subfolder = kwargs.get("subfolder")
base_path = (
os.path.join(pretrained_model_name_or_path, subfolder)
if subfolder
else pretrained_model_name_or_path
)
local_tok_path = os.path.join(base_path, "tokenizer.pkl")
if os.path.isfile(local_tok_path):
with open(local_tok_path, "rb") as f:
return pickle.load(f)
snapshot_kwargs = {k: kwargs[k] for k in kwargs if k in {
"cache_dir",
"force_download",
"local_files_only",
"proxies",
"resume_download",
"revision",
"token",
"use_auth_token",
}}
token = snapshot_kwargs.pop("token", None)
if token is None:
token = snapshot_kwargs.pop("use_auth_token", None)
if token is not None:
snapshot_kwargs["token"] = token
snapshot_dir = snapshot_download(pretrained_model_name_or_path, **snapshot_kwargs)
tok_path = os.path.join(snapshot_dir, subfolder, "tokenizer.pkl") if subfolder else os.path.join(snapshot_dir, "tokenizer.pkl")
if not os.path.isfile(tok_path):
try:
tok_path = hf_hub_download(
repo_id=pretrained_model_name_or_path,
filename="tokenizer.pkl",
subfolder=subfolder,
**snapshot_kwargs,
)
except (HfHubHTTPError, OSError) as e:
raise ValueError(
f"Could not load tokenizer.pkl from {pretrained_model_name_or_path}. "
f"Make sure the path exists or the repo is accessible on the Hub."
) from e
with open(tok_path, "rb") as f:
return pickle.load(f)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
enc = cls._load_encoding(pretrained_model_name_or_path, **kwargs)
return cls(enc)
def encode(self, text, prepend=None):
ids = self.enc.encode_ordinary(text)
if prepend is not None:
prepend_id = prepend if isinstance(prepend, int) else self.enc.encode_single_token(prepend)
ids.insert(0, prepend_id)
return ids
def decode(self, ids):
return self.enc.decode(ids)
def get_bos_token_id(self):
return self.bos_token_id
def encode_special(self, token):
return self.enc.encode_single_token(token)
class NanoGPTTokenizer(_BaseNanoGPTTokenizer):
pass
class NanoGPTChatTokenizer(PreTrainedTokenizer):
"""Transformers-compatible tokenizer with chat helpers."""
vocab_files_names = {"vocab_file": "tokenizer.pkl"}
model_input_names = ["input_ids"]
_special_tokens = {
"bos": "<|bos|>",
"user_start": "<|user_start|>",
"user_end": "<|user_end|>",
"assistant_start": "<|assistant_start|>",
"assistant_end": "<|assistant_end|>",
"python_start": "<|python_start|>",
"python_end": "<|python_end|>",
"output_start": "<|output_start|>",
"output_end": "<|output_end|>",
}
def __init__(
self,
vocab_file: str,
bos_token: str = "<|bos|>",
eos_token: str = "<|assistant_end|>",
pad_token: Optional[str] = None,
**kwargs,
) -> None:
# Load encoding and build vocab mappings before parent init
with open(vocab_file, "rb") as f:
self.enc = pickle.load(f)
self.vocab_file = vocab_file
self.special_token_ids: Dict[str, int] = {
name: self.enc.encode_single_token(token)
for name, token in self._special_tokens.items()
}
self.bos_token_id = self.special_token_ids["bos"]
self.eos_token_id = self.special_token_ids["assistant_end"]
pad_token = pad_token or eos_token
self.pad_token_id = self.special_token_ids["assistant_end"]
self._build_vocabulary()
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
**kwargs,
)
additional_special_tokens = [
token
for key, token in self._special_tokens.items()
if token not in {bos_token, eos_token, pad_token}
]
if additional_special_tokens:
self.add_special_tokens({"additional_special_tokens": additional_special_tokens})
self.chat_template = kwargs.get("chat_template", getattr(self, "chat_template", None))
# ------------------------------------------------------------------
# Core tokenizer API
# ------------------------------------------------------------------
def _build_vocabulary(self) -> None:
id_to_token: Dict[int, str] = {}
token_to_id: Dict[str, int] = {}
for idx in range(self.enc.n_vocab):
token_bytes = self.enc.decode_single_token_bytes(idx)
token_str = token_bytes.decode("utf-8", errors="replace")
id_to_token[idx] = token_str
token_to_id[token_str] = idx
self._id_to_token = id_to_token
self._token_to_id = token_to_id
def get_vocab(self) -> Dict[str, int]:
return dict(self._token_to_id)
@property
def vocab_size(self) -> int: # type: ignore[override]
return self.enc.n_vocab
def _tokenize(self, text: str, **kwargs) -> List[str]:
ids = self.enc.encode_ordinary(text)
return [self._id_to_token[i] for i in ids]
def _convert_token_to_id(self, token: str) -> int:
if token in self._token_to_id:
return self._token_to_id[token]
raise KeyError(f"Token not found in vocabulary: {token}")
def _convert_id_to_token(self, index: int) -> str:
return self._id_to_token[index]
def convert_tokens_to_string(self, tokens: List[str]) -> str: # type: ignore[override]
ids = [self._token_to_id[token] for token in tokens]
return self.enc.decode(ids)
def build_inputs_with_special_tokens( # type: ignore[override]
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None,
) -> List[int]:
if token_ids_1 is not None:
return token_ids_0 + token_ids_1
return token_ids_0
def get_special_tokens_mask( # type: ignore[override]
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None,
) -> List[int]:
all_ids = token_ids_0 if token_ids_1 is None else token_ids_0 + token_ids_1
return [1 if token in self.special_token_ids else 0 for token in all_ids]
def num_special_tokens_to_add(self, pair: bool = False) -> int: # type: ignore[override]
return 0
def save_vocabulary(
self,
save_directory: str,
filename_prefix: Optional[str] = None,
) -> Tuple[str]: # type: ignore[override]
os.makedirs(save_directory, exist_ok=True)
filename = "tokenizer.pkl"
if filename_prefix is not None:
filename = f"{filename_prefix}-{filename}"
save_path = os.path.join(save_directory, filename)
shutil.copyfile(self.vocab_file, save_path)
return (save_path,)
# ------------------------------------------------------------------
# Chat helpers
# ------------------------------------------------------------------
def encode_special(self, token: str) -> int:
if token in self.special_token_ids:
return self.special_token_ids[token]
return self._token_to_id[token]
def _encode_text(self, text: str) -> List[int]:
return self.enc.encode_ordinary(text)
def _encode_python_block(self, token_id: int, content: str) -> List[int]:
tokens = [token_id]
tokens.extend(self._encode_text(content))
closing = {
self.special_token_ids["python_start"]: self.special_token_ids["python_end"],
self.special_token_ids["output_start"]: self.special_token_ids["output_end"],
}[token_id]
tokens.append(closing)
return tokens
def _encode_assistant_content(self, content) -> List[int]:
if isinstance(content, str):
return self._encode_text(content)
if isinstance(content, list):
tokens: List[int] = []
for part in content:
part_type = part.get("type", "text")
text = part.get("text", "")
if part_type == "text":
tokens.extend(self._encode_text(text))
elif part_type == "python":
tokens.extend(
self._encode_python_block(
self.special_token_ids["python_start"],
text,
)
)
elif part_type == "python_output":
tokens.extend(
self._encode_python_block(
self.special_token_ids["output_start"],
text,
)
)
else:
raise ValueError(f"Unknown assistant content part: {part_type}")
return tokens
raise ValueError(f"Unsupported assistant content type: {type(content)}")
def _render_conversation_ids(self, conversation: Sequence[Dict[str, object]]) -> List[int]:
if not conversation:
raise ValueError("Conversation must contain at least one message")
messages = list(conversation)
if messages[0]["role"] == "system":
if len(messages) < 2 or messages[1]["role"] != "user":
raise ValueError("System message must be followed by a user message")
merged = dict(messages[1])
merged["content"] = f"{messages[0]['content']}\n\n{messages[1]['content']}"
messages = [merged] + messages[2:]
ids: List[int] = [self.bos_token_id]
for idx, message in enumerate(messages):
expected_role = "user" if idx % 2 == 0 else "assistant"
role = message.get("role")
if role != expected_role:
raise ValueError(f"Expected role {expected_role}, received {role} at index {idx}")
content = message.get("content")
if expected_role == "user":
start = self.special_token_ids["user_start"]
end = self.special_token_ids["user_end"]
if not isinstance(content, str):
raise ValueError("User messages must contain string content")
ids.append(start)
ids.extend(self._encode_text(content))
ids.append(end)
else:
start = self.special_token_ids["assistant_start"]
end = self.special_token_ids["assistant_end"]
ids.append(start)
ids.extend(self._encode_assistant_content(content))
ids.append(end)
return ids
def apply_chat_template( # type: ignore[override]
self,
conversation,
tokenize: bool = False,
add_generation_prompt: bool = False,
return_tensors: Optional[str] = None,
padding: bool = False,
truncation: bool = False,
max_length: Optional[int] = None,
**kwargs,
):
if isinstance(conversation, dict) and "messages" in conversation:
messages = conversation["messages"]
else:
messages = conversation
token_ids = self._render_conversation_ids(messages)
if add_generation_prompt:
token_ids.append(self.special_token_ids["assistant_start"])
if tokenize:
if return_tensors is not None:
return self(
[token_ids],
add_special_tokens=False,
return_tensors=return_tensors,
padding=padding,
truncation=truncation,
max_length=max_length,
**kwargs,
)
return token_ids
return self.decode(token_ids, skip_special_tokens=False)
def encode_chat_message(self, role: str, content: str) -> List[int]:
rendered = self.apply_chat_template(
[
{"role": role, "content": content},
],
tokenize=True,
add_generation_prompt=False,
)
return rendered
|