import glob import math import os import shutil from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from huggingface_hub import snapshot_download from transformers import PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithPast from .configuration_nanogpt import NanoGPTConfig def _rms_norm(x: torch.Tensor) -> torch.Tensor: return F.rms_norm(x, (x.size(-1),)) def _apply_rotary_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor: assert x.ndim == 4 d = x.shape[3] // 2 x1, x2 = x[..., :d], x[..., d:] y1 = x1 * cos + x2 * sin y2 = x1 * (-sin) + x2 * cos out = torch.cat([y1, y2], 3) return out.to(x.dtype) def _repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: if n_rep == 1: return x bs, n_kv_heads, slen, head_dim = x.shape return ( x[:, :, None, :, :] .expand(bs, n_kv_heads, n_rep, slen, head_dim) .reshape(bs, n_kv_heads * n_rep, slen, head_dim) ) class CausalSelfAttention(nn.Module): def __init__(self, config: NanoGPTConfig, layer_idx: int): super().__init__() self.layer_idx = layer_idx self.n_head = config.n_head self.n_kv_head = config.n_kv_head self.n_embd = config.n_embd self.head_dim = self.n_embd // self.n_head assert self.n_embd % self.n_head == 0 assert self.n_kv_head <= self.n_head and self.n_head % self.n_kv_head == 0 self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False) self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False) self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False) self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False) def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor: B, T, C = x.size() q = self.c_q(x).view(B, T, self.n_head, self.head_dim) k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim) v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim) cos, sin = cos_sin q, k = _apply_rotary_emb(q, cos, sin), _apply_rotary_emb(k, cos, sin) q, k = _rms_norm(q), _rms_norm(k) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) Tq = q.size(2) Tk = k.size(2) nrep = self.n_head // self.n_kv_head k, v = _repeat_kv(k, nrep), _repeat_kv(v, nrep) if Tq == Tk: y = F.scaled_dot_product_attention(q, k, v, is_causal=True) elif Tq == 1: y = F.scaled_dot_product_attention(q, k, v, is_causal=False) else: attn_mask = torch.zeros((Tq, Tk), dtype=torch.bool, device=q.device) prefix_len = Tk - Tq if prefix_len > 0: attn_mask[:, :prefix_len] = True attn_mask[:, prefix_len:] = torch.tril(torch.ones((Tq, Tq), dtype=torch.bool, device=q.device)) y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) y = y.transpose(1, 2).contiguous().view(B, T, -1) y = self.c_proj(y) return y def forward_with_cache( self, x: torch.Tensor, cos_sin, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: B, T, _ = x.size() q = self.c_q(x).view(B, T, self.n_head, self.head_dim) k = self.c_k(x).view(B, T, self.n_kv_head, self.head_dim) v = self.c_v(x).view(B, T, self.n_kv_head, self.head_dim) cos, sin = cos_sin q, k = _apply_rotary_emb(q, cos, sin), _apply_rotary_emb(k, cos, sin) q, k = _rms_norm(q), _rms_norm(k) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if past_key_value is not None: past_k, past_v = past_key_value if past_k is not None and past_v is not None: k = torch.cat([past_k, k], dim=2) v = torch.cat([past_v, v], dim=2) present = (k, v) if use_cache else None Tq = q.size(2) Tk = k.size(2) nrep = self.n_head // self.n_kv_head k_rep = _repeat_kv(k, nrep) v_rep = _repeat_kv(v, nrep) attn_mask = None if attention_mask is not None: attn_mask = attention_mask.to(dtype=torch.bool, device=q.device) if attn_mask.dim() == 2: attn_mask = attn_mask[:, None, None, :] elif attn_mask.dim() == 4: pass else: raise ValueError("Unsupported attention_mask dimensions") if attn_mask.size(-1) != Tk: attn_mask = torch.nn.functional.pad(attn_mask, (Tk - attn_mask.size(-1), 0)) attn_mask = (~attn_mask).to(dtype=q.dtype) * -1e4 if Tq == Tk: y = F.scaled_dot_product_attention(q, k_rep, v_rep, attn_mask=attn_mask, is_causal=True) else: y = F.scaled_dot_product_attention(q, k_rep, v_rep, attn_mask=attn_mask, is_causal=False) y = y.transpose(1, 2).contiguous().view(B, T, -1) y = self.c_proj(y) return y, present class MLP(nn.Module): def __init__(self, config: NanoGPTConfig): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False) self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.c_fc(x) x = F.relu(x).square() x = self.c_proj(x) return x class Block(nn.Module): def __init__(self, config: NanoGPTConfig, layer_idx: int): super().__init__() self.attn = CausalSelfAttention(config, layer_idx) self.mlp = MLP(config) def forward(self, x: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor: x = x + self.attn(_rms_norm(x), cos_sin, kv_cache) x = x + self.mlp(_rms_norm(x)) return x class NanoGPTModel(PreTrainedModel): config_class = NanoGPTConfig _CANONICAL_WEIGHT_NAMES = ( "pytorch_model.bin", "model.safetensors", "model.ckpt.index", "tf_model.h5", "flax_model.msgpack", ) _PT_PATTERN = "model_*.pt" @classmethod def _snapshot_kwargs(cls, source_kwargs: Dict) -> Dict: keys = { "cache_dir", "force_download", "local_files_only", "proxies", "resume_download", "revision", "token", "use_auth_token", } return {k: source_kwargs[k] for k in keys if k in source_kwargs} @classmethod def _resolve_checkpoint_dir(cls, pretrained_model_name_or_path, subfolder=None, **kwargs): if os.path.isdir(pretrained_model_name_or_path): base_dir = pretrained_model_name_or_path else: snapshot_params = cls._snapshot_kwargs(kwargs) token = snapshot_params.pop("token", None) if token is None: token = snapshot_params.pop("use_auth_token", None) if token is not None: snapshot_params["token"] = token base_dir = snapshot_download(pretrained_model_name_or_path, **snapshot_params) if subfolder: base_dir = os.path.join(base_dir, subfolder) cls._ensure_canonical_weights(base_dir) return base_dir @classmethod def _ensure_canonical_weights(cls, checkpoint_dir): for name in cls._CANONICAL_WEIGHT_NAMES: candidate = os.path.join(checkpoint_dir, name) if os.path.isfile(candidate): return candidate pt_candidates = sorted( glob.glob(os.path.join(checkpoint_dir, cls._PT_PATTERN)), reverse=True, ) if not pt_candidates: raise FileNotFoundError( f"No checkpoint weights found in {checkpoint_dir}. Expected one of {cls._CANONICAL_WEIGHT_NAMES} " f"or files matching {cls._PT_PATTERN}." ) source_path = pt_candidates[0] target_path = os.path.join(checkpoint_dir, "pytorch_model.bin") if ( not os.path.isfile(target_path) or os.path.getmtime(source_path) > os.path.getmtime(target_path) ): shutil.copyfile(source_path, target_path) return target_path def __init__(self, config: NanoGPTConfig): super().__init__(config) config.use_cache = getattr(config, "use_cache", True) config.num_hidden_layers = config.n_layer config.num_attention_heads = config.n_head config.hidden_size = config.n_embd self.transformer = nn.ModuleDict({ "wte": nn.Embedding(config.vocab_size, config.n_embd), "h": nn.ModuleList([Block(config, layer_idx) for layer_idx in range(config.n_layer)]), }) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.rotary_seq_len = config.sequence_len * 10 head_dim = config.n_embd // config.n_head cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim) self.register_buffer("cos", cos, persistent=False) self.register_buffer("sin", sin, persistent=False) # ensure fp32 activations self.transformer.wte.to(dtype=torch.bfloat16) # following HF API expectations self.post_init() def _init_weights(self, module: nn.Module): if isinstance(module, nn.Linear): fan_out = module.weight.size(0) fan_in = module.weight.size(1) std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in)) torch.nn.init.normal_(module.weight, mean=0.0, std=std) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=1.0) def _precompute_rotary_embeddings(self, seq_len: int, head_dim: int, base: int = 10000, device=None): if device is None: device = self.transformer.wte.weight.device # Handle meta device case - use CPU as fallback if device.type == 'meta': device = torch.device('cpu') channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device) inv_freq = 1.0 / (base ** (channel_range / head_dim)) t = torch.arange(seq_len, dtype=torch.float32, device=device) freqs = torch.outer(t, inv_freq) cos, sin = freqs.cos(), freqs.sin() cos, sin = cos.bfloat16(), sin.bfloat16() cos, sin = cos[None, :, None, :], sin[None, :, None, :] return cos, sin def _apply_softcap(self, logits: torch.Tensor) -> torch.Tensor: softcap = 15 return softcap * torch.tanh(logits / softcap) def _forward_impl(self, idx: torch.Tensor, cos_sin, kv_cache=None) -> torch.Tensor: x = self.transformer.wte(idx) x = x.float() x = _rms_norm(x) for block in self.transformer.h: x = block(x, cos_sin, kv_cache) x = _rms_norm(x) logits = self.lm_head(x) return self._apply_softcap(logits) def forward(self, input_ids: torch.Tensor, labels=None, loss_reduction: str = 'mean', **kwargs): idx = input_ids B, T = idx.size() T0 = 0 cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T] logits = self._forward_impl(idx, cos_sin, kv_cache=None) loss = None if labels is not None: loss = F.cross_entropy( logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1, reduction=loss_reduction, ) return {"loss": loss, "logits": logits} class NanoGPTChat(NanoGPTModel): """Chat-optimized variant with HF-friendly generate and support for KV cache.""" def __init__(self, config: NanoGPTConfig): super().__init__(config) self.use_cache = getattr(config, "use_cache", True) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "past_key_values": past_key_values, **kwargs} def _expand_past_length(self, past_key_values): if not past_key_values: return 0 past_k, _ = past_key_values[0] if past_k is None: return 0 return past_k.size(2) def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None, use_cache: Optional[bool] = None, labels: Optional[torch.Tensor] = None, loss_reduction: str = "mean", **kwargs, ) -> CausalLMOutputWithPast: idx = input_ids B, T = idx.size() use_cache = self.use_cache if use_cache is None else use_cache past_length = self._expand_past_length(past_key_values) T0 = past_length cos_sin = self.cos[:, T0:T0+T], self.sin[:, T0:T0+T] x = self.transformer.wte(idx) x = x.float() x = _rms_norm(x) presents = [] if use_cache else None for layer_idx, block in enumerate(self.transformer.h): past = None if past_key_values is not None and past_key_values[layer_idx] is not None: past = past_key_values[layer_idx] attn_output, present = block.attn.forward_with_cache( _rms_norm(x), cos_sin, past_key_value=past, attention_mask=attention_mask, use_cache=use_cache, ) x = x + attn_output x = x + block.mlp(_rms_norm(x)) if use_cache: presents.append(present) x = _rms_norm(x) logits = self.lm_head(x) loss = None if labels is not None: loss = F.cross_entropy( logits.view(-1, logits.size(-1)), labels.view(-1), ignore_index=-1, reduction=loss_reduction, ) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=presents, )