|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
import torch.nn.functional as F |
|
from typing import Any, Dict, List |
|
|
|
|
|
|
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path="./"): |
|
|
|
|
|
|
|
self.model = torch.jit.trace( |
|
AutoModel.from_pretrained( |
|
path, |
|
torchscript=True, |
|
), |
|
[torch.randint(0,100,(2,128)), torch.randint(0,100,(2,128))], |
|
) |
|
self.model.eval() |
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
|
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
self.model.to(self.device) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : |
|
- "label": A string representing what the label/class is. There can be multiple labels. |
|
- "score": A score between 0 and 1 describing how confident the model is for this label/class. |
|
""" |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
with torch.inference_mode(): |
|
|
|
if parameters is None: |
|
max_length = 512 |
|
else: |
|
max_length = parameters.pop("max_length", 512) |
|
|
|
inputs = self.tokenizer( |
|
inputs, |
|
padding=True, |
|
truncation=True, |
|
return_tensors='pt', |
|
max_length=max_length, |
|
).to(self.device) |
|
|
|
model_output = self.model(inputs.input_ids, inputs.attention_mask) |
|
|
|
sentence_embeddings = mean_pooling(model_output, inputs.attention_mask) |
|
|
|
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) |
|
|
|
|
|
|
|
return { |
|
"embeddings": sentence_embeddings.cpu().tolist() |
|
} |