Upload folder using huggingface_hub
Browse files- README.md +16 -4
- handler.py +7 -7
README.md
CHANGED
@@ -5,7 +5,7 @@ tags:
|
|
5 |
- generated_from_trainer
|
6 |
- transformers
|
7 |
library_name: sentence-transformers
|
8 |
-
pipeline_tag:
|
9 |
model-index:
|
10 |
- name: bge_reranker
|
11 |
results: []
|
@@ -13,9 +13,9 @@ inference:
|
|
13 |
parameters:
|
14 |
normalize: True
|
15 |
widget:
|
16 |
-
-
|
17 |
-
|
18 |
-
|
19 |
- "Hello! How are you?"
|
20 |
- "Cats and dogs"
|
21 |
- "The sky is blue"
|
@@ -76,6 +76,18 @@ curl "https://xxxxxxx.us-east-1.aws.endpoints.huggingface.cloud" \
|
|
76 |
|
77 |
```python
|
78 |
from FlagEmbedding import FlagReranker
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
reranker = FlagReranker('netandreus/bge-reranker-v2-m3', use_fp16=True)
|
80 |
scores = reranker.compute_score(arr, normalize=True)
|
81 |
if not isinstance(scores, list):
|
|
|
5 |
- generated_from_trainer
|
6 |
- transformers
|
7 |
library_name: sentence-transformers
|
8 |
+
pipeline_tag: sentence-similarity
|
9 |
model-index:
|
10 |
- name: bge_reranker
|
11 |
results: []
|
|
|
13 |
parameters:
|
14 |
normalize: True
|
15 |
widget:
|
16 |
+
- inputs:
|
17 |
+
source_sentence: "Hello, world!"
|
18 |
+
sentences:
|
19 |
- "Hello! How are you?"
|
20 |
- "Cats and dogs"
|
21 |
- "The sky is blue"
|
|
|
76 |
|
77 |
```python
|
78 |
from FlagEmbedding import FlagReranker
|
79 |
+
|
80 |
+
class RerankRequest(BaseModel):
|
81 |
+
query: str
|
82 |
+
documents: list[str]
|
83 |
+
|
84 |
+
# Prepare array
|
85 |
+
arr = []
|
86 |
+
for element in request.documents:
|
87 |
+
arr.append([request.query, element])
|
88 |
+
print(arr)
|
89 |
+
|
90 |
+
# Inference
|
91 |
reranker = FlagReranker('netandreus/bge-reranker-v2-m3', use_fp16=True)
|
92 |
scores = reranker.compute_score(arr, normalize=True)
|
93 |
if not isinstance(scores, list):
|
handler.py
CHANGED
@@ -19,22 +19,22 @@ class EndpointHandler:
|
|
19 |
Expected input format:
|
20 |
{
|
21 |
"inputs": {
|
22 |
-
"
|
23 |
-
"
|
24 |
},
|
25 |
"normalize": true # Optional; defaults to False
|
26 |
}
|
27 |
"""
|
28 |
inputs = data.get("inputs", {})
|
29 |
-
|
30 |
-
|
31 |
normalize = data.get("normalize", False)
|
32 |
|
33 |
-
if not
|
34 |
-
return [{"error": "Both '
|
35 |
|
36 |
# Prepare input pairs
|
37 |
-
pairs = [[
|
38 |
|
39 |
# Tokenize input pairs
|
40 |
tokenizer_inputs = self.tokenizer(
|
|
|
19 |
Expected input format:
|
20 |
{
|
21 |
"inputs": {
|
22 |
+
"source_sentence": "Your query here",
|
23 |
+
"sentences": ["Document 1", "Document 2", ...]
|
24 |
},
|
25 |
"normalize": true # Optional; defaults to False
|
26 |
}
|
27 |
"""
|
28 |
inputs = data.get("inputs", {})
|
29 |
+
source_sentence = inputs.get("source_sentence")
|
30 |
+
sentences = inputs.get("sentences", [])
|
31 |
normalize = data.get("normalize", False)
|
32 |
|
33 |
+
if not source_sentence or not sentences:
|
34 |
+
return [{"error": "Both 'source_sentence' and 'sentences' fields are required inside 'inputs'."}]
|
35 |
|
36 |
# Prepare input pairs
|
37 |
+
pairs = [[source_sentence, text] for text in sentences]
|
38 |
|
39 |
# Tokenize input pairs
|
40 |
tokenizer_inputs = self.tokenizer(
|