Upload folder using huggingface_hub
Browse files- handler.py +62 -0
handler.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
class EndpointHandler:
|
7 |
+
def __init__(self, path: str = "BAAI/bge-reranker-v2-m3"):
|
8 |
+
# Load tokenizer and model
|
9 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
10 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(path)
|
11 |
+
self.model.eval()
|
12 |
+
|
13 |
+
# Determine the computation device
|
14 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
self.model.to(self.device)
|
16 |
+
|
17 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
18 |
+
"""
|
19 |
+
Expected input format:
|
20 |
+
{
|
21 |
+
"query": "Your query here",
|
22 |
+
"texts": ["Document 1", "Document 2", ...],
|
23 |
+
"normalize": true # Optional; defaults to False
|
24 |
+
}
|
25 |
+
"""
|
26 |
+
query = data.get("query")
|
27 |
+
texts = data.get("texts", [])
|
28 |
+
normalize = data.get("normalize", False)
|
29 |
+
|
30 |
+
if not query or not texts:
|
31 |
+
return [{"error": "Both 'query' and 'texts' fields are required."}]
|
32 |
+
|
33 |
+
# Prepare input pairs
|
34 |
+
pairs = [[query, text] for text in texts]
|
35 |
+
|
36 |
+
# Tokenize input pairs
|
37 |
+
inputs = self.tokenizer(
|
38 |
+
pairs,
|
39 |
+
padding=True,
|
40 |
+
truncation=True,
|
41 |
+
return_tensors="pt",
|
42 |
+
max_length=512
|
43 |
+
).to(self.device)
|
44 |
+
|
45 |
+
with torch.no_grad():
|
46 |
+
# Get model logits
|
47 |
+
outputs = self.model(**inputs)
|
48 |
+
scores = outputs.logits.view(-1)
|
49 |
+
|
50 |
+
# Apply sigmoid normalization if requested
|
51 |
+
if normalize:
|
52 |
+
scores = torch.sigmoid(scores)
|
53 |
+
|
54 |
+
# Prepare the response
|
55 |
+
results = [
|
56 |
+
{"index": idx, "score": score.item()}
|
57 |
+
for idx, score in enumerate(scores)
|
58 |
+
]
|
59 |
+
|
60 |
+
# Sort results by descending score
|
61 |
+
results.sort(key=lambda x: x["score"], reverse=True)
|
62 |
+
return results
|