--- license: mit base_model: BAAI/bge-reranker-v2-m3 tags: - generated_from_trainer - transformers library_name: sentence-transformers pipeline_tag: text-ranking model-index: - name: bge_reranker results: [] inference: parameters: normalize: true widget: - inputs: source_sentence: "Hello, world!" sentences: - "Hello! How are you?" - "Cats and dogs" - "The sky is blue" --- # Reranker model - [Reranker model](#reranker-model) - [Brief information](#brief-information) - [Supporting architectures](#supporting-architectures) - [Example usage](#example-usage) - [HuggingFace Inference Endpoints](#huggingface-inference-endpoints) - [Local inference](#local-inference) ## Brief information This repository contains reranker model ```bge-reranker-v2-m3``` which you can run on HuggingFace Inference Endpoints. - Base model: [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) with no any fine tune. - Commit: [953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e](https://huggingface.co/BAAI/bge-reranker-v2-m3/commit/953dc6f6f85a1b2dbfca4c34a2796e7dde08d41e) **More details please refer to the [repo of bse model](https://huggingface.co/BAAI/bge-reranker-v2-m3).** ## Supporting architectures - Apple Silicon MPS - Nvidia GPU - HuggingFace Inference Endpoints (AWS) - CPU (Intel Sapphire Rapids, 4 vCPU, 8 Gb) - GPU (Nvidia T4) - Infernia 2 (2 cores, 32 Gb RAM) ## Example usage ### HuggingFace Inference Endpoints ⚠️ When you will deploy this model in HuggingFace Inference endpoints plese select ```Settings``` -> ```Advanced settings``` -> ```Task```: ```Sentence Similarity``` ```bash curl "https://xxxxxxx.us-east-1.aws.endpoints.huggingface.cloud" \ -X POST \ -H "Accept: application/json" \ -H "Authorization: Bearer hf_yyyyyyy" \ -H "Content-Type: application/json" \ -d '{ "inputs": { "source_sentence": "Hello, world!", "sentences": [ "Hello! How are you?", "Cats and dogs", "The sky is blue" ] }, "normalize": true }' ``` ### Local inference ```python from FlagEmbedding import FlagReranker class RerankRequest(BaseModel): query: str documents: list[str] # Prepare array arr = [] for element in request.documents: arr.append([request.query, element]) print(arr) # Inference reranker = FlagReranker('netandreus/bge-reranker-v2-m3', use_fp16=True) scores = reranker.compute_score(arr, normalize=True) if not isinstance(scores, list): scores = [scores] print(scores) # [-8.1875, 5.26171875] ```