--- license: apache-2.0 tags: - audio - speech - audio-to-audio - speech-language-models datasets: - amphion/Emilia-Dataset - facebook/multilingual_librispeech - CSTR-Edinburgh/vctk - google/fleurs - mozilla-foundation/common_voice_13_0 - mythicinfinity/libritts_r --- # Model Details Distill-NeuCodec is a version of NeuCodec with a compatible, distilled encoder. The distilled encoder is 10x smaller in parameter count and uses ~7.5x less MACs at inference time. The distilled model makes the following adjustments to the model: * Swap the notoriuously slow [BigCodec](https://arxiv.org/abs/2409.05377) acoustic encoder for the [SQCodec](https://arxiv.org/abs/2504.04949) acoustic encoder (70m → 36m) * Swap the [w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) semantic encoder for [DistilHuBERT](https://huggingface.co/ntu-spml/distilhubert) (600m → 21m) Our work is largely based on extending the work of [X-Codec2.0](https://huggingface.co/HKUSTAudio/xcodec2) and [SQCodec](https://arxiv.org/abs/2504.04949). - **Developed by:** Neuphonic - **Model type:** Neural Audio Codec - **License:** apache-2.0 - **Repository:** https://github.com/neuphonic/neucodec - **Paper:** [arXiv](https://arxiv.org/abs/2509.09550) - **Pre-encoded Datasets:** - [Emilia-YODAS-EN](https://huggingface.co/datasets/neuphonic/emilia-yodas-english-neucodec) - *More coming soon!* ## Get Started Use the code below to get started with the model. To install from pypi in a dedicated environment, using Python 3.10 or above: ```bash conda create -n neucodec python=3.10 conda activate neucodec pip install neucodec ``` Then, to use in python: ```python import librosa import torch import torchaudio from torchaudio import transforms as T from neucodec import DistillNeuCodec model = DistillNeuCodec.from_pretrained("neuphonic/distill-neucodec") model.eval().cuda() y, sr = torchaudio.load(librosa.ex("libri1")) if sr != 16_000: y = T.Resample(sr, 16_000)(y)[None, ...] # (B, 1, T_16) with torch.no_grad(): fsq_codes = model.encode_code(y) # fsq_codes = model.encode_code(librosa.ex("libri1")) # or directly pass your filepath! print(f"Codes shape: {fsq_codes.shape}") recon = model.decode_code(fsq_codes).cpu() # (B, 1, T_24) torchaudio.save("reconstructed.wav", recon[0, :, :], 24_000) ``` ## Training Details The model was trained using the same data as the full model, with an additional distillation loss (MSE between distilled and original encoder ouputs).