File size: 161,854 Bytes
1dee151 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"source": [
"# The NLP Pipeline"
],
"metadata": {
"id": "BK6CXSOk6K-X"
}
},
{
"cell_type": "markdown",
"source": [
""
],
"metadata": {
"id": "-Q-ktKxN6QFc"
}
},
{
"cell_type": "markdown",
"source": [
"## 1. Sentence Segmentation 💬\n",
"\n",
"This initial step involves **breaking down raw text into individual sentences**. It's crucial because many subsequent NLP tasks operate at the sentence level. We'll use a library like **NLTK's `punkt` tokenizer**, which is trained to recognize sentence boundaries.\n",
"\n",
"* **Colab Demo:**\n",
" * **Input:** A multi-sentence paragraph.\n",
" * **Code:** `from nltk.tokenize import sent_tokenize; text = \"Your sample paragraph here.\"; sentences = sent_tokenize(text)`\n",
" * **Output:** A list where each element is a separate sentence."
],
"metadata": {
"id": "4E-bWQxq6unO"
}
},
{
"cell_type": "markdown",
"source": [
"## 2. Word Tokenization 🏷️\n",
"\n",
"After segmentation, we further break down each sentence into **individual words or \"tokens.\"** Punctuation is often treated as separate tokens. This process creates the fundamental units of text that NLP models will analyze. We'll again use an NLTK tokenizer for this.\n",
"\n",
"* **Colab Demo:**\n",
" * **Input:** A single sentence (from the previous step's output).\n",
" * **Code:** `from nltk.tokenize import word_tokenize; sentence = \"Your sample sentence here.\"; words = word_tokenize(sentence)`\n",
" * **Output:** A list of individual words and punctuation marks."
],
"metadata": {
"id": "AuhW2n-h7jHe"
}
},
{
"cell_type": "markdown",
"source": [
"## 3. Stemming 🌳\n",
"\n",
"Stemming is a basic technique to **reduce words to their root or \"stem\" form** by chopping off suffixes. The resulting stem might not be a linguistically valid word, but it helps group together variations of a word. It's often used for information retrieval. We'll demonstrate with **NLTK's Porter Stemmer**.\n",
"\n",
"* **Colab Demo:**\n",
" * **Input:** A list of words (e.g., \"running,\" \"runs,\" \"ran,\" \"runner\").\n",
" * **Code:** `from nltk.stem import PorterStemmer; stemmer = PorterStemmer(); stemmed_words = [stemmer.stem(word) for word in words_list]`\n",
" * **Output:** The list of words with their stemmed versions (e.g., \"run,\" \"run,\" \"ran,\" \"runner\")."
],
"metadata": {
"id": "uN-UpLCq7oUf"
}
},
{
"cell_type": "markdown",
"source": [
"## 4. Lemmatization 🍋\n",
"\n",
"Lemmatization is a more sophisticated process that **reduces words to their base or dictionary form (lemma)**. Unlike stemming, the lemma is always a valid word. It uses morphological analysis and often requires knowing the word's part of speech for accuracy. We'll use **NLTK's WordNetLemmatizer**.\n",
"\n",
"* **Colab Demo:**\n",
" * **Input:** A list of words (e.g., \"better,\" \"cars,\" \"geese,\" \"ran\").\n",
" * **Code:** `from nltk.stem import WordNetLemmatizer; lemmatizer = WordNetLemmatizer(); lemmatized_words = [lemmatizer.lemmatize(word) for word in words_list]`\n",
" * **Output:** The list of words with their lemmatized versions (e.g., \"good,\" \"car,\" \"goose,\" \"run\")."
],
"metadata": {
"id": "hQ7ZDOs37s5F"
}
},
{
"cell_type": "markdown",
"source": [
"## 5. Stop Word Analysis 🚫\n",
"\n",
"**Stop words are common words** (like \"the,\" \"a,\" \"is,\" \"and\") that often carry little significant meaning and can be removed without losing much context. Removing them helps reduce noise and focus on more important terms for analysis. We'll use NLTK's predefined list of English stop words.\n",
"\n",
"* **Colab Demo:**\n",
" * **Input:** A sentence or list of words containing stop words.\n",
" * **Code:** `from nltk.corpus import stopwords; stop_words = set(stopwords.words('english')); filtered_words = [word for word in word_list if word.lower() not in stop_words]`\n",
" * **Output:** The list of words with stop words removed."
],
"metadata": {
"id": "fRjDQklN7xbz"
}
},
{
"cell_type": "markdown",
"source": [],
"metadata": {
"id": "oOrr6EPQ7z5h"
}
},
{
"cell_type": "markdown",
"source": [
"## 6. Dependency Parsing 🔗\n",
"\n",
"Dependency parsing analyzes the **grammatical relationships between words in a sentence**. It identifies which words are dependent on others, forming a tree-like structure. This helps us understand the syntactic structure and how words relate to each other's meanings. We'll use **spaCy** for its efficient dependency parser.\n",
"\n",
"* **Colab Demo:**\n",
" * **Input:** A simple sentence.\n",
" * **Code:** `import spacy; nlp = spacy.load(\"en_core_web_sm\"); doc = nlp(\"The quick brown fox jumps over the lazy dog.\"); for token in doc: print(f\"{token.text} -- {token.dep_} -- {token.head.text}\")`\n",
" * **Output:** A table showing each word, its dependency relation, and its head word. You might also display spaCy's built-in dependency visualizer."
],
"metadata": {
"id": "HR6r2uLy75JP"
}
},
{
"cell_type": "markdown",
"source": [
"## 7. Part-of-Speech Tagging 🏷️\n",
"\n",
"Part-of-Speech (POS) tagging is the process of **assigning a grammatical category to each word** in a sentence. This includes tags like noun (NN), verb (VB), adjective (JJ), adverb (RB), etc. It's a fundamental step that helps subsequent analyses understand the role of each word. We'll use **spaCy** for this.\n",
"\n",
"* **Colab Demo:**\n",
" * **Input:** A sentence.\n",
" * **Code:** `import spacy; nlp = spacy.load(\"en_core_web_sm\"); doc = nlp(\"The quick brown fox jumps over the lazy dog.\"); for token in doc: print(f\"{token.text} -- {token.pos_}\")`\n",
" * **Output:** Each word followed by its assigned POS tag."
],
"metadata": {
"id": "n87eCqiG752y"
}
},
{
"cell_type": "markdown",
"source": [
"---"
],
"metadata": {
"id": "2WUj-RLl8EyW"
}
},
{
"cell_type": "markdown",
"source": [
"# Natural Language Processing (NLP) Pipeline & Sentiment Analysis Demo"
],
"metadata": {
"id": "x7L3ZGft8GEi"
}
},
{
"cell_type": "markdown",
"source": [
"This Google Colab notebook demonstrates fundamental steps in a Natural Language Processing (NLP) pipeline,\n",
"followed by a practical example of sentiment analysis.\n",
"\n",
"We will cover:\n",
"1. **NLP Pipeline Steps:**\n",
" * Sentence Segmentation\n",
" * Word Tokenization\n",
" * Stemming\n",
" * Lemmatization\n",
" * Stop Word Removal\n",
" * Dependency Parsing\n",
" * Part-of-Speech Tagging\n",
"2. **Sentiment Analysis:**\n",
" * Using NLTK's VADER (Valence Aware Dictionary and sEntiment Reasoner)\n",
"\n",
"Let's get started!"
],
"metadata": {
"id": "ujVtZFGRGSxI"
}
},
{
"cell_type": "code",
"source": [
"%%bash\n",
"pip install nltk huggingface_hub transformers spacy gensim fastai==2.7.12 fastcore==1.5.29 inltk==0.5.1\n",
"\n",
"# Download necessary NLTK data\n",
"python -c \"import nltk; nltk.download('punkt'); nltk.download('wordnet'); nltk.download('stopwords'); nltk.download('averaged_perceptron_tagger'); nltk.download('vader_lexicon')\"\n",
"\n",
"# Download necessary spaCy model\n",
"python -m spacy download en_core_web_sm"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Yffv35qsBiqf",
"outputId": "d070ca40-b633-4e85-d7b5-882b149ee2c1"
},
"execution_count": 2,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: nltk in /usr/local/lib/python3.11/dist-packages (3.9.1)\n",
"Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.11/dist-packages (0.33.4)\n",
"Requirement already satisfied: transformers in /usr/local/lib/python3.11/dist-packages (4.53.2)\n",
"Requirement already satisfied: spacy in /usr/local/lib/python3.11/dist-packages (3.8.7)\n",
"Collecting gensim\n",
" Downloading gensim-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (8.1 kB)\n",
"Collecting fastai==2.7.12\n",
" Downloading fastai-2.7.12-py3-none-any.whl.metadata (9.6 kB)\n",
"Collecting fastcore==1.5.29\n",
" Downloading fastcore-1.5.29-py3-none-any.whl.metadata (3.5 kB)\n",
"Collecting en-core-web-sm==3.8.0\n",
" Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.8.0/en_core_web_sm-3.8.0-py3-none-any.whl (12.8 MB)\n",
" ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.8/12.8 MB 106.5 MB/s eta 0:00:00\n",
"\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n",
"You can now load the package via spacy.load('en_core_web_sm')\n",
"\u001b[38;5;3m⚠ Restart to reload dependencies\u001b[0m\n",
"If you are in a Jupyter or Colab notebook, you may need to restart Python in\n",
"order to load all the package's dependencies. You can do this by selecting the\n",
"'Restart kernel' or 'Restart runtime' option.\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"ERROR: Could not find a version that satisfies the requirement inltk==0.5.1 (from versions: 0.0.2, 0.0.3, 0.0.4, 0.0.5, 0.0.6, 0.0.7, 0.0.8, 0.1.0, 0.2.0, 0.3.0, 0.4.0, 0.5.0, 0.6.0, 0.6.1, 0.7, 0.7.1, 0.7.2, 0.7.3, 0.7.4, 0.7.5, 0.8, 0.8.1, 0.9)\n",
"ERROR: No matching distribution found for inltk==0.5.1\n",
"[nltk_data] Downloading package punkt to /root/nltk_data...\n",
"[nltk_data] Unzipping tokenizers/punkt.zip.\n",
"[nltk_data] Downloading package wordnet to /root/nltk_data...\n",
"[nltk_data] Downloading package stopwords to /root/nltk_data...\n",
"[nltk_data] Unzipping corpora/stopwords.zip.\n",
"[nltk_data] Downloading package averaged_perceptron_tagger to\n",
"[nltk_data] /root/nltk_data...\n",
"[nltk_data] Unzipping taggers/averaged_perceptron_tagger.zip.\n",
"[nltk_data] Downloading package vader_lexicon to /root/nltk_data...\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4ecccc97"
},
"source": [
"## NLP Pipeline Demonstration (English)"
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "c71fac50",
"outputId": "436a9190-607a-4e6f-e51a-1d555776f6b4"
},
"source": [
"import nltk\n",
"import spacy\n",
"from nltk.tokenize import sent_tokenize, word_tokenize\n",
"from nltk.stem import PorterStemmer, WordNetLemmatizer\n",
"from nltk.corpus import stopwords\n",
"from nltk.sentiment.vader import SentimentIntensityAnalyzer\n",
"\n",
"# Download necessary NLTK data (already done in setup but good to have here too)\n",
"# These lines are typically run once in the setup cell.\n",
"# For this standalone snippet, uncomment if running in a fresh environment\n",
"# nltk.download('punkt')\n",
"# nltk.download('wordnet')\n",
"# nltk.download('stopwords')\n",
"# nltk.download('averaged_perceptron_tagger') # Needed for default POS tagging with NLTK, but we use spaCy here\n",
"# nltk.download('vader_lexicon')\n",
"# nltk.download('punkt_tab') # This specific download is often not needed if 'punkt' is already there\n",
"print(\"NLTK data resources checked/downloaded...\")\n",
"\n",
"\n",
"# Load spaCy model\n",
"try:\n",
" nlp_en = spacy.load(\"en_core_web_sm\")\n",
" print(\"\\nEnglish Core Web spaCy Model Loaded successfully.\\n\")\n",
"except OSError:\n",
" print(\"SpaCy model 'en_core_web_sm' not found. Downloading...\")\n",
" !python -m spacy download en_core_web_sm\n",
" nlp_en = spacy.load(\"en_core_web_sm\")\n",
" print(\"\\nEnglish Core Web spaCy Model Downloaded and Loaded.\\n\")\n",
"\n",
"\n",
"text_en = \"\"\"Natural Language Processing (NLP) is a fascinating and rapidly evolving field at the intersection of computer science, artificial intelligence, and linguistics. At its core, NLP enables computers to understand, interpret, and generate human language in a valuable and meaningful way. It's about bridging the communication gap between humans and machines, allowing us to interact with technology using our most natural form of expression: language.\\n\n",
"The utility of NLP spans a vast array of applications that touch our daily lives, often without us even realizing it. From the moment you ask a virtual assistant a question, to the automatic translation of a webpage, or even the spam filter protecting your inbox, NLP is hard at work. It's the engine behind search engines that understand your queries, recommendation systems that suggest content, and grammar checkers that refine your writing.\\n\n",
"One of NLP's crucial applications is in sentiment analysis, where it determines the emotional tone behind a piece of text. Businesses use this to gauge customer feedback from social media, reviews, and surveys, allowing them to understand public perception of their products or services. This insight is invaluable for strategic decision-up making, product development, and customer relationship management.\\n\n",
"Machine translation is another cornerstone of NLP, breaking down language barriers across the globe. Services like Google Translate utilize sophisticated NLP models to convert text or speech from one language to another, facilitating international communication, trade, and cultural exchange.11 While still imperfect, these systems are constantly improving, striving for more nuanced and contextually accurate translations.\\n\n",
"The rise of chatbots and virtual assistants is heavily reliant on NLP. These AI-powered entities process user queries, understand their intent, and generate coherent and relevant responses, simulating human-like conversation.14 They are increasingly deployed in customer service, healthcare, and education, providing instant support and information, thereby enhancing user experience and operational efficiency.\\n\n",
"NLP also plays a pivotal role in information extraction, where it identifies and pulls specific data points from unstructured text. This can involve extracting names, dates, locations, or key facts from legal documents, research papers, or news articles. It transforms vast quantities of raw text into structured, actionable data, significantly reducing the manual effort required for data analysis and knowledge discovery.\\n\n",
"The importance of NLP cannot be overstated in today's data-driven world. As the volume of digital text data explodes, NLP provides the tools to make sense of this information, transforming it into valuable insights. It empowers organizations to automate tasks, improve decision-making, enhance customer interactions, and uncover hidden patterns in textual data that would otherwise be impossible to analyze at scale.\\n\n",
"Furthermore, NLP is critical for accessibility and inclusion. By enabling text-to-speech and speech-to-text functionalities, it assists individuals with disabilities in accessing information and communicating more effectively. It also helps bridge linguistic divides, allowing people from different language backgrounds to interact and share knowledge seamlessly.\\n\n",
"The advancements in NLP are largely driven by breakthroughs in machine learning and deep learning, particularly with the advent of transformer models like BERT, GPT, and others. These models have revolutionized the field, pushing the boundaries of what's possible in language understanding and generation, leading to more accurate translations, more coherent text generation, and more sophisticated conversational AI.\\n\n",
"In conclusion, NLP is not just a technological innovation; it's a transformative force that is reshaping how humans interact with technology and each other. Its continuous evolution promises to unlock even more sophisticated applications, further integrating intelligent language capabilities into every facet of our digital and real-world experiences, making information more accessible and interactions more intuitive.\\n\"\"\"\n",
"\n",
"# --- Original Text Display ---\n",
"print(\"\\n\" + \"=\"*50)\n",
"print(\" ORIGINAL TEXT\")\n",
"print(\"=\"*50)\n",
"print(f\"\\n{text_en}\\n\")\n",
"print(\"=\"*50)\n",
"\n",
"\n",
"# --- 1. Sentence Segmentation ---\n",
"print(\"\\n\\n\" + \"=\"*50)\n",
"print(\" 1. SENTENCE SEGMENTATION\")\n",
"print(\"=\"*50)\n",
"sentences_en = sent_tokenize(text_en)\n",
"print(\"\\nDetected Sentences:\")\n",
"for i, sentence in enumerate(sentences_en):\n",
" print(f\" [{i+1}] {sentence}\")\n",
"print(\"-\" * 50)\n",
"\n",
"\n",
"# --- 2. Word Tokenization ---\n",
"print(\"\\n\\n\" + \"=\"*50)\n",
"print(\" 2. WORD TOKENIZATION\")\n",
"print(\"=\"*50)\n",
"# Using the first sentence for demonstration\n",
"words_en = word_tokenize(sentences_en[0])\n",
"print(f\"\\nSentence for Tokenization: '{sentences_en[0]}'\")\n",
"print(f\"Tokens: {words_en}\")\n",
"print(\"-\" * 50)\n",
"\n",
"\n",
"# --- 3. Stemming (using Porter Stemmer) ---\n",
"print(\"\\n\\n\" + \"=\"*50)\n",
"print(\" 3. STEMMING (Porter Stemmer)\")\n",
"print(\"=\"*50)\n",
"stemmer = PorterStemmer()\n",
"stemmed_words_en = [stemmer.stem(word) for word in words_en]\n",
"print(f\"\\nOriginal Tokens: {words_en}\")\n",
"print(f\"Stemmed Tokens: {stemmed_words_en}\")\n",
"print(\"-\" * 50)\n",
"\n",
"\n",
"# --- 4. Lemmatization (using WordNetLemmatizer) ---\n",
"print(\"\\n\\n\" + \"=\"*50)\n",
"print(\" 4. LEMMATIZATION (WordNetLemmatizer)\")\n",
"print(\"=\"*50)\n",
"lemmatizer = WordNetLemmatizer()\n",
"# Note: Lemmatization often benefits from POS tagging for accuracy\n",
"# For a simple demo, we'll just use the default (noun)\n",
"lemmatized_words_en = [lemmatizer.lemmatize(word) for word in words_en]\n",
"print(f\"\\nOriginal Tokens: {words_en}\")\n",
"print(f\"Lemmatized Tokens: {lemmatized_words_en}\")\n",
"print(\"-\" * 50)\n",
"\n",
"\n",
"# --- 5. Stop Word Analysis ---\n",
"print(\"\\n\\n\" + \"=\"*50)\n",
"print(\" 5. STOP WORD REMOVAL\")\n",
"print(\"=\"*50)\n",
"stop_words_en = set(stopwords.words('english'))\n",
"filtered_words_en = [word for word in words_en if word.lower() not in stop_words_en]\n",
"print(f\"\\nOriginal Tokens: {words_en}\")\n",
"print(f\"Tokens after Stop Word Removal: {filtered_words_en}\")\n",
"print(\"-\" * 50)\n",
"\n",
"\n",
"# --- 6. Dependency Parsing (using spaCy) ---\n",
"print(\"\\n\\n\" + \"=\"*50)\n",
"print(\" 6. DEPENDENCY PARSING (using spaCy)\")\n",
"print(\"=\"*50)\n",
"# Corrected: Process the first sentence (a string) with spaCy\n",
"doc_en_parsed = nlp_en(sentences_en[0])\n",
"print(f\"\\nSentence for Dependency Parsing: '{sentences_en[0]}'\")\n",
"print(\"\\n{:<15} {:<20} {:<15} {:<10}\".format(\"Word\", \"Dependency Relation\", \"Head Word\", \"Head POS\"))\n",
"print(\"-\" * 70) # Adjusted length for better visual separation\n",
"for token in doc_en_parsed:\n",
" print(f\"{token.text:<15} {token.dep_:<20} {token.head.text:<15} {token.head.pos_:<10}\")\n",
"print(\"-\" * 70)\n",
"\n",
"\n",
"# --- 7. Part-of-Speech Tagging (using spaCy) ---\n",
"print(\"\\n\\n\" + \"=\"*50)\n",
"print(\" 7. PART-OF-SPEECH TAGGING (using spaCy)\")\n",
"print(\"=\"*50)\n",
"# Using the same doc_en_parsed from the previous step for consistency\n",
"print(f\"\\nSentence for POS Tagging: '{sentences_en[0]}'\")\n",
"print(\"\\n{:<15} {:<15} {:<25}\".format(\"Word\", \"POS Tag\", \"Explanation\"))\n",
"print(\"-\" * 55)\n",
"for token in doc_en_parsed:\n",
" print(f\"{token.text:<15} {token.pos_:<15} {spacy.explain(token.pos_):<25}\")\n",
"print(\"-\" * 55)\n",
"\n",
"print(\"\\n\\n\" + \"=\"*50)\n",
"print(\" NLP Pipeline Demo Complete!\")\n",
"print(\"=\"*50)\n"
],
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"NLTK data resources checked/downloaded...\n",
"\n",
"English Core Web spaCy Model Loaded successfully.\n",
"\n",
"\n",
"==================================================\n",
" ORIGINAL TEXT\n",
"==================================================\n",
"\n",
"Natural Language Processing (NLP) is a fascinating and rapidly evolving field at the intersection of computer science, artificial intelligence, and linguistics. At its core, NLP enables computers to understand, interpret, and generate human language in a valuable and meaningful way. It's about bridging the communication gap between humans and machines, allowing us to interact with technology using our most natural form of expression: language.\n",
"\n",
"The utility of NLP spans a vast array of applications that touch our daily lives, often without us even realizing it. From the moment you ask a virtual assistant a question, to the automatic translation of a webpage, or even the spam filter protecting your inbox, NLP is hard at work. It's the engine behind search engines that understand your queries, recommendation systems that suggest content, and grammar checkers that refine your writing.\n",
"\n",
"One of NLP's crucial applications is in sentiment analysis, where it determines the emotional tone behind a piece of text. Businesses use this to gauge customer feedback from social media, reviews, and surveys, allowing them to understand public perception of their products or services. This insight is invaluable for strategic decision-up making, product development, and customer relationship management.\n",
"\n",
"Machine translation is another cornerstone of NLP, breaking down language barriers across the globe. Services like Google Translate utilize sophisticated NLP models to convert text or speech from one language to another, facilitating international communication, trade, and cultural exchange.11 While still imperfect, these systems are constantly improving, striving for more nuanced and contextually accurate translations.\n",
"\n",
"The rise of chatbots and virtual assistants is heavily reliant on NLP. These AI-powered entities process user queries, understand their intent, and generate coherent and relevant responses, simulating human-like conversation.14 They are increasingly deployed in customer service, healthcare, and education, providing instant support and information, thereby enhancing user experience and operational efficiency.\n",
"\n",
"NLP also plays a pivotal role in information extraction, where it identifies and pulls specific data points from unstructured text. This can involve extracting names, dates, locations, or key facts from legal documents, research papers, or news articles. It transforms vast quantities of raw text into structured, actionable data, significantly reducing the manual effort required for data analysis and knowledge discovery.\n",
"\n",
"The importance of NLP cannot be overstated in today's data-driven world. As the volume of digital text data explodes, NLP provides the tools to make sense of this information, transforming it into valuable insights. It empowers organizations to automate tasks, improve decision-making, enhance customer interactions, and uncover hidden patterns in textual data that would otherwise be impossible to analyze at scale.\n",
"\n",
"Furthermore, NLP is critical for accessibility and inclusion. By enabling text-to-speech and speech-to-text functionalities, it assists individuals with disabilities in accessing information and communicating more effectively. It also helps bridge linguistic divides, allowing people from different language backgrounds to interact and share knowledge seamlessly.\n",
"\n",
"The advancements in NLP are largely driven by breakthroughs in machine learning and deep learning, particularly with the advent of transformer models like BERT, GPT, and others. These models have revolutionized the field, pushing the boundaries of what's possible in language understanding and generation, leading to more accurate translations, more coherent text generation, and more sophisticated conversational AI.\n",
"\n",
"In conclusion, NLP is not just a technological innovation; it's a transformative force that is reshaping how humans interact with technology and each other. Its continuous evolution promises to unlock even more sophisticated applications, further integrating intelligent language capabilities into every facet of our digital and real-world experiences, making information more accessible and interactions more intuitive.\n",
"\n",
"\n",
"==================================================\n",
"\n",
"\n",
"==================================================\n",
" 1. SENTENCE SEGMENTATION\n",
"==================================================\n",
"\n",
"Detected Sentences:\n",
" [1] Natural Language Processing (NLP) is a fascinating and rapidly evolving field at the intersection of computer science, artificial intelligence, and linguistics.\n",
" [2] At its core, NLP enables computers to understand, interpret, and generate human language in a valuable and meaningful way.\n",
" [3] It's about bridging the communication gap between humans and machines, allowing us to interact with technology using our most natural form of expression: language.\n",
" [4] The utility of NLP spans a vast array of applications that touch our daily lives, often without us even realizing it.\n",
" [5] From the moment you ask a virtual assistant a question, to the automatic translation of a webpage, or even the spam filter protecting your inbox, NLP is hard at work.\n",
" [6] It's the engine behind search engines that understand your queries, recommendation systems that suggest content, and grammar checkers that refine your writing.\n",
" [7] One of NLP's crucial applications is in sentiment analysis, where it determines the emotional tone behind a piece of text.\n",
" [8] Businesses use this to gauge customer feedback from social media, reviews, and surveys, allowing them to understand public perception of their products or services.\n",
" [9] This insight is invaluable for strategic decision-up making, product development, and customer relationship management.\n",
" [10] Machine translation is another cornerstone of NLP, breaking down language barriers across the globe.\n",
" [11] Services like Google Translate utilize sophisticated NLP models to convert text or speech from one language to another, facilitating international communication, trade, and cultural exchange.11 While still imperfect, these systems are constantly improving, striving for more nuanced and contextually accurate translations.\n",
" [12] The rise of chatbots and virtual assistants is heavily reliant on NLP.\n",
" [13] These AI-powered entities process user queries, understand their intent, and generate coherent and relevant responses, simulating human-like conversation.14 They are increasingly deployed in customer service, healthcare, and education, providing instant support and information, thereby enhancing user experience and operational efficiency.\n",
" [14] NLP also plays a pivotal role in information extraction, where it identifies and pulls specific data points from unstructured text.\n",
" [15] This can involve extracting names, dates, locations, or key facts from legal documents, research papers, or news articles.\n",
" [16] It transforms vast quantities of raw text into structured, actionable data, significantly reducing the manual effort required for data analysis and knowledge discovery.\n",
" [17] The importance of NLP cannot be overstated in today's data-driven world.\n",
" [18] As the volume of digital text data explodes, NLP provides the tools to make sense of this information, transforming it into valuable insights.\n",
" [19] It empowers organizations to automate tasks, improve decision-making, enhance customer interactions, and uncover hidden patterns in textual data that would otherwise be impossible to analyze at scale.\n",
" [20] Furthermore, NLP is critical for accessibility and inclusion.\n",
" [21] By enabling text-to-speech and speech-to-text functionalities, it assists individuals with disabilities in accessing information and communicating more effectively.\n",
" [22] It also helps bridge linguistic divides, allowing people from different language backgrounds to interact and share knowledge seamlessly.\n",
" [23] The advancements in NLP are largely driven by breakthroughs in machine learning and deep learning, particularly with the advent of transformer models like BERT, GPT, and others.\n",
" [24] These models have revolutionized the field, pushing the boundaries of what's possible in language understanding and generation, leading to more accurate translations, more coherent text generation, and more sophisticated conversational AI.\n",
" [25] In conclusion, NLP is not just a technological innovation; it's a transformative force that is reshaping how humans interact with technology and each other.\n",
" [26] Its continuous evolution promises to unlock even more sophisticated applications, further integrating intelligent language capabilities into every facet of our digital and real-world experiences, making information more accessible and interactions more intuitive.\n",
"--------------------------------------------------\n",
"\n",
"\n",
"==================================================\n",
" 2. WORD TOKENIZATION\n",
"==================================================\n",
"\n",
"Sentence for Tokenization: 'Natural Language Processing (NLP) is a fascinating and rapidly evolving field at the intersection of computer science, artificial intelligence, and linguistics.'\n",
"Tokens: ['Natural', 'Language', 'Processing', '(', 'NLP', ')', 'is', 'a', 'fascinating', 'and', 'rapidly', 'evolving', 'field', 'at', 'the', 'intersection', 'of', 'computer', 'science', ',', 'artificial', 'intelligence', ',', 'and', 'linguistics', '.']\n",
"--------------------------------------------------\n",
"\n",
"\n",
"==================================================\n",
" 3. STEMMING (Porter Stemmer)\n",
"==================================================\n",
"\n",
"Original Tokens: ['Natural', 'Language', 'Processing', '(', 'NLP', ')', 'is', 'a', 'fascinating', 'and', 'rapidly', 'evolving', 'field', 'at', 'the', 'intersection', 'of', 'computer', 'science', ',', 'artificial', 'intelligence', ',', 'and', 'linguistics', '.']\n",
"Stemmed Tokens: ['natur', 'languag', 'process', '(', 'nlp', ')', 'is', 'a', 'fascin', 'and', 'rapidli', 'evolv', 'field', 'at', 'the', 'intersect', 'of', 'comput', 'scienc', ',', 'artifici', 'intellig', ',', 'and', 'linguist', '.']\n",
"--------------------------------------------------\n",
"\n",
"\n",
"==================================================\n",
" 4. LEMMATIZATION (WordNetLemmatizer)\n",
"==================================================\n",
"\n",
"Original Tokens: ['Natural', 'Language', 'Processing', '(', 'NLP', ')', 'is', 'a', 'fascinating', 'and', 'rapidly', 'evolving', 'field', 'at', 'the', 'intersection', 'of', 'computer', 'science', ',', 'artificial', 'intelligence', ',', 'and', 'linguistics', '.']\n",
"Lemmatized Tokens: ['Natural', 'Language', 'Processing', '(', 'NLP', ')', 'is', 'a', 'fascinating', 'and', 'rapidly', 'evolving', 'field', 'at', 'the', 'intersection', 'of', 'computer', 'science', ',', 'artificial', 'intelligence', ',', 'and', 'linguistics', '.']\n",
"--------------------------------------------------\n",
"\n",
"\n",
"==================================================\n",
" 5. STOP WORD REMOVAL\n",
"==================================================\n",
"\n",
"Original Tokens: ['Natural', 'Language', 'Processing', '(', 'NLP', ')', 'is', 'a', 'fascinating', 'and', 'rapidly', 'evolving', 'field', 'at', 'the', 'intersection', 'of', 'computer', 'science', ',', 'artificial', 'intelligence', ',', 'and', 'linguistics', '.']\n",
"Tokens after Stop Word Removal: ['Natural', 'Language', 'Processing', '(', 'NLP', ')', 'fascinating', 'rapidly', 'evolving', 'field', 'intersection', 'computer', 'science', ',', 'artificial', 'intelligence', ',', 'linguistics', '.']\n",
"--------------------------------------------------\n",
"\n",
"\n",
"==================================================\n",
" 6. DEPENDENCY PARSING (using spaCy)\n",
"==================================================\n",
"\n",
"Sentence for Dependency Parsing: 'Natural Language Processing (NLP) is a fascinating and rapidly evolving field at the intersection of computer science, artificial intelligence, and linguistics.'\n",
"\n",
"Word Dependency Relation Head Word Head POS \n",
"----------------------------------------------------------------------\n",
"Natural compound Language PROPN \n",
"Language compound Processing PROPN \n",
"Processing nsubj is AUX \n",
"( punct Processing PROPN \n",
"NLP appos Processing PROPN \n",
") punct Processing PROPN \n",
"is ROOT is AUX \n",
"a det field NOUN \n",
"fascinating amod field NOUN \n",
"and cc fascinating ADJ \n",
"rapidly advmod evolving VERB \n",
"evolving conj fascinating ADJ \n",
"field attr is AUX \n",
"at prep is AUX \n",
"the det intersection NOUN \n",
"intersection pobj at ADP \n",
"of prep intersection NOUN \n",
"computer compound science NOUN \n",
"science pobj of ADP \n",
", punct science NOUN \n",
"artificial amod intelligence NOUN \n",
"intelligence conj science NOUN \n",
", punct intelligence NOUN \n",
"and cc intelligence NOUN \n",
"linguistics conj intelligence NOUN \n",
". punct is AUX \n",
"----------------------------------------------------------------------\n",
"\n",
"\n",
"==================================================\n",
" 7. PART-OF-SPEECH TAGGING (using spaCy)\n",
"==================================================\n",
"\n",
"Sentence for POS Tagging: 'Natural Language Processing (NLP) is a fascinating and rapidly evolving field at the intersection of computer science, artificial intelligence, and linguistics.'\n",
"\n",
"Word POS Tag Explanation \n",
"-------------------------------------------------------\n",
"Natural PROPN proper noun \n",
"Language PROPN proper noun \n",
"Processing PROPN proper noun \n",
"( PUNCT punctuation \n",
"NLP PROPN proper noun \n",
") PUNCT punctuation \n",
"is AUX auxiliary \n",
"a DET determiner \n",
"fascinating ADJ adjective \n",
"and CCONJ coordinating conjunction \n",
"rapidly ADV adverb \n",
"evolving VERB verb \n",
"field NOUN noun \n",
"at ADP adposition \n",
"the DET determiner \n",
"intersection NOUN noun \n",
"of ADP adposition \n",
"computer NOUN noun \n",
"science NOUN noun \n",
", PUNCT punctuation \n",
"artificial ADJ adjective \n",
"intelligence NOUN noun \n",
", PUNCT punctuation \n",
"and CCONJ coordinating conjunction \n",
"linguistics NOUN noun \n",
". PUNCT punctuation \n",
"-------------------------------------------------------\n",
"\n",
"\n",
"==================================================\n",
" NLP Pipeline Demo Complete!\n",
"==================================================\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "a9a5ba97"
},
"source": [
"### Sentiment Analysis Demonstration"
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "343fe3ab",
"outputId": "cb3b0f40-ce74-4fda-daae-faeb1765790f"
},
"source": [
"from nltk.sentiment.vader import SentimentIntensityAnalyzer\n",
"\n",
"# --- Sentiment Analysis ---\n",
"print(\"=\"*60) # Increased width for new headers\n",
"print(\" SENTIMENT ANALYSIS (using NLTK's VADER)\")\n",
"print(\"=\"*60) # Increased width for new headers\n",
"analyzer_en = SentimentIntensityAnalyzer()\n",
"\n",
"sentences_for_sentiment_en = [\n",
" \"This is a great movie!\",\n",
" \"I really disliked that experience.\",\n",
" \"The weather is neutral today.\",\n",
" \"This product is amazing and I love it!\",\n",
" \"It was okay, nothing special.\"\n",
"]\n",
"\n",
"# Print table header with full words\n",
"print(\"\\n{:<45} {:>10} {:>10} {:>10} {:>12} {:>12}\".format(\n",
" \"Sentence\", \"Negative\", \"Neutral\", \"Positive\", \"Compound\", \"Sentiment\"\n",
"))\n",
"print(\"-\" * 105) # Adjusted length for new headers and wider columns\n",
"\n",
"# Analyze and print each sentence in a table row\n",
"for sentence in sentences_for_sentiment_en:\n",
" vs = analyzer_en.polarity_scores(sentence)\n",
" if vs['compound'] >= 0.05:\n",
" sentiment = 'Positive'\n",
" elif vs['compound'] <= -0.05:\n",
" sentiment = 'Negative'\n",
" else:\n",
" sentiment = 'Neutral'\n",
" print(\"{:<45} {:>10.3f} {:>10.3f} {:>10.3f} {:>12.3f} {:>12}\".format( # Adjusted width for numbers\n",
" f\"'{sentence}'\",\n",
" vs['neg'], vs['neu'], vs['pos'], vs['compound'], sentiment\n",
" ))\n",
"\n",
"print(\"\\n\" + \"=\"*60)\n",
"print(\" NLP Pipeline & Sentiment Analysis Demo Complete!\")\n",
"print(\"=\"*60)"
],
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"============================================================\n",
" SENTIMENT ANALYSIS (using NLTK's VADER)\n",
"============================================================\n",
"\n",
"Sentence Negative Neutral Positive Compound Sentiment\n",
"---------------------------------------------------------------------------------------------------------\n",
"'This is a great movie!' 0.000 0.406 0.594 0.659 Positive\n",
"'I really disliked that experience.' 0.499 0.501 0.000 -0.458 Negative\n",
"'The weather is neutral today.' 0.000 1.000 0.000 0.000 Neutral\n",
"'This product is amazing and I love it!' 0.000 0.376 0.624 0.852 Positive\n",
"'It was okay, nothing special.' 0.315 0.419 0.265 -0.092 Negative\n",
"\n",
"============================================================\n",
" NLP Pipeline & Sentiment Analysis Demo Complete!\n",
"============================================================\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"### 😃 What is Sentiment Analysis?\n",
"\n",
"Sentiment analysis, also known as opinion mining, is a Natural Language Processing (NLP) technique used to determine the **emotional tone** of a piece of text. Its goal is to classify the sentiment expressed in text as positive, negative, or neutral. This technology helps computers understand subjective information, making it incredibly useful for:\n",
"\n",
" * **Understanding customer feedback:** Analyzing reviews, social media comments, and support tickets to gauge satisfaction.\n",
" * **Market research:** Tracking public opinion about products, brands, or political candidates.\n",
" * **Brand monitoring:** Identifying mentions of a brand and understanding the sentiment associated with them.\n",
" * **Customer service:** Prioritizing urgent or negative feedback.\n",
"\n",
"\n",
"### 🛠️ How Sentiment Analysis Works in our Code (using VADER)\n",
"\n",
"Our code uses **NLTK's VADER (Valence Aware Dictionary and sEntiment Reasoner)** for sentiment analysis. VADER is a rule-based sentiment analysis model specifically attuned to sentiments expressed in social media contexts. It doesn't rely on training data (like machine learning models) but instead uses a lexicon (a dictionary of words) and a set of rules.\n",
"\n",
"Here's a breakdown of how it works in oour code:\n",
"\n",
"#### 1\\. The VADER Lexicon\n",
"\n",
"VADER comes with a **pre-built lexicon** containing a list of words, each associated with a sentiment score (valence). For example:\n",
"\n",
" * \"good\" might have a positive score.\n",
" * \"bad\" might have a negative score.\n",
" * \"amazing\" would have a higher positive score than \"good.\"\n",
"\n",
"It also considers:\n",
"\n",
" * **Punctuation:** Exclamation marks (e.g., \"amazing\\!\\!\\!\") increase intensity.\n",
" * **Capitalization:** All-caps words (e.g., \"AWFUL\") increase intensity.\n",
" * **Degree modifiers (Adverbs):** Words like \"very\" or \"not\" can alter the sentiment of a subsequent word (e.g., \"very good\" is stronger than \"good\"; \"not good\" flips the sentiment).\n",
" * **Conjunctions:** Words like \"but\" can shift sentiment focus.\n",
"\n",
"#### 2\\. The `SentimentIntensityAnalyzer()`\n",
"\n",
"In oour code:\n",
"\n",
"```python\n",
"analyzer_en = SentimentIntensityAnalyzer()\n",
"```\n",
"\n",
"This line **initializes the VADER sentiment analyzer**. It loads the VADER lexicon and rules, preparing the `analyzer_en` object to process text.\n",
"\n",
"#### 3\\. Analyzing Sentences with `polarity_scores()`\n",
"\n",
"For each sentence in your `sentences_for_sentiment_en` list:\n",
"\n",
"```python\n",
"vs = analyzer_en.polarity_scores(sentence)\n",
"```\n",
"\n",
"The `polarity_scores()` method takes a sentence as input and returns a dictionary (`vs`) containing four key scores:\n",
"\n",
" * **`'neg'` (Negative):** The proportion of text that expresses **negative** sentiment.\n",
" * **`'neu'` (Neutral):** The proportion of text that expresses **neutral** sentiment.\n",
" * **`'pos'` (Positive):** The proportion of text that expresses **positive** sentiment.\n",
" * *Note: The sum of `neg`, `neu`, and `pos` for a sentence will approximately add up to 1.0.*\n",
" * **`'compound'` (Compound):** This is the most important score. It's a normalized, weighted composite score ranging from **-1 (most extreme negative)** to **+1 (most extreme positive)**. It's derived by summing the valence scores of each word in the lexicon, adjusting for rules (like intensity boosters or negations), and then normalizing the result.\n",
"\n",
"#### 4\\. Interpreting the `compound` Score\n",
"\n",
"Your code then uses the `compound` score to classify the overall sentiment:\n",
"\n",
"```python\n",
"if vs['compound'] >= 0.05:\n",
" sentiment = 'Positive'\n",
"elif vs['compound'] <= -0.05:\n",
" sentiment = 'Negative'\n",
"else:\n",
" sentiment = 'Neutral'\n",
"```\n",
"\n",
"This logic applies common thresholds for interpreting the `compound` score:\n",
"\n",
" * If `compound` is **0.05 or greater**, the sentiment is considered **Positive**.\n",
" * If `compound` is **-0.05 or less**, the sentiment is considered **Negative**.\n",
" * If `compound` is **between -0.05 and 0.05** (exclusive of the bounds), the sentiment is considered **Neutral**.\n",
"\n",
"This simple yet effective rule-based approach makes VADER a popular choice for quick and relatively accurate sentiment analysis, especially for informal text like social media posts."
],
"metadata": {
"id": "75mhvP_9S4Lo"
}
},
{
"cell_type": "markdown",
"source": [
"## NLP Pipeline (Part Two)"
],
"metadata": {
"id": "8-9T4A-OTl5P"
}
},
{
"cell_type": "code",
"source": [
"# Install required libraries\n",
"!pip install nltk spacy transformers sentencepiece --quiet\n",
"!python -m spacy download en_core_web_sm"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "VExPAM_hVm5k",
"outputId": "1580689d-ff26-4f07-d9f0-96313bc5807b"
},
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Collecting en-core-web-sm==3.8.0\n",
" Downloading https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.8.0/en_core_web_sm-3.8.0-py3-none-any.whl (12.8 MB)\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.8/12.8 MB\u001b[0m \u001b[31m55.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h\u001b[38;5;2m✔ Download and installation successful\u001b[0m\n",
"You can now load the package via spacy.load('en_core_web_sm')\n",
"\u001b[38;5;3m⚠ Restart to reload dependencies\u001b[0m\n",
"If you are in a Jupyter or Colab notebook, you may need to restart Python in\n",
"order to load all the package's dependencies. You can do this by selecting the\n",
"'Restart kernel' or 'Restart runtime' option.\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import nltk\n",
"import spacy\n",
"nltk.download('punkt')\n",
"nltk.download('stopwords')\n",
"nltk.download('wordnet')\n",
"nltk.download('averaged_perceptron_tagger')\n",
"nltk.download('vader_lexicon')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "0I5io_qWVnMg",
"outputId": "9093102a-de9b-4054-d2e9-2bd3022631cf"
},
"execution_count": 2,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"[nltk_data] Downloading package punkt to /root/nltk_data...\n",
"[nltk_data] Package punkt is already up-to-date!\n",
"[nltk_data] Downloading package stopwords to /root/nltk_data...\n",
"[nltk_data] Package stopwords is already up-to-date!\n",
"[nltk_data] Downloading package wordnet to /root/nltk_data...\n",
"[nltk_data] Package wordnet is already up-to-date!\n",
"[nltk_data] Downloading package averaged_perceptron_tagger to\n",
"[nltk_data] /root/nltk_data...\n",
"[nltk_data] Package averaged_perceptron_tagger is already up-to-\n",
"[nltk_data] date!\n",
"[nltk_data] Downloading package vader_lexicon to /root/nltk_data...\n",
"[nltk_data] Package vader_lexicon is already up-to-date!\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"True"
]
},
"metadata": {},
"execution_count": 2
}
]
},
{
"cell_type": "markdown",
"source": [
"2. NLP Pipeline Steps\n",
"\n",
" 2.1. Sentence Segmentation"
],
"metadata": {
"id": "2VvjnJjvVzkr"
}
},
{
"cell_type": "code",
"source": [
"from nltk.tokenize import sent_tokenize\n",
"\n",
"text = \"Natural Language Processing is fascinating. It enables computers to understand human language!\"\n",
"\n",
"sentences = sent_tokenize(text)\n",
"print(\"Sentence Segmentation:\", sentences)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "5hlX2ilrVviA",
"outputId": "6fc7284c-ba2a-45f3-d20d-db7c028471d8"
},
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Sentence Segmentation: ['Natural Language Processing is fascinating.', 'It enables computers to understand human language!']\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"2.2. Word Tokenization"
],
"metadata": {
"id": "0dltR_hIV8rS"
}
},
{
"cell_type": "code",
"source": [
"from nltk.tokenize import word_tokenize\n",
"\n",
"tokens = word_tokenize(text)\n",
"print(\"Word Tokens:\", tokens)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "L4NAcXGGV4q9",
"outputId": "4b1f2b61-03aa-4757-fd8d-df86e46a217b"
},
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Word Tokens: ['Natural', 'Language', 'Processing', 'is', 'fascinating', '.', 'It', 'enables', 'computers', 'to', 'understand', 'human', 'language', '!']\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"2.3 Stemming"
],
"metadata": {
"id": "3LyiR8XcWCBh"
}
},
{
"cell_type": "code",
"source": [
"from nltk.stem import PorterStemmer\n",
"\n",
"stemmer = PorterStemmer()\n",
"stems = [stemmer.stem(token) for token in tokens]\n",
"print(\"Stems:\", stems)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "q4-hPHXvV_e3",
"outputId": "5b8adead-be41-41f8-9715-aa70f7360ed0"
},
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Stems: ['natur', 'languag', 'process', 'is', 'fascin', '.', 'it', 'enabl', 'comput', 'to', 'understand', 'human', 'languag', '!']\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"2.4 Lemmatization"
],
"metadata": {
"id": "EFMk66vjWGiT"
}
},
{
"cell_type": "code",
"source": [
"from nltk.stem import WordNetLemmatizer\n",
"\n",
"lemmatizer = WordNetLemmatizer()\n",
"lemmas = [lemmatizer.lemmatize(token) for token in tokens]\n",
"print(\"Lemmas:\", lemmas)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "SHbByxuBWDu2",
"outputId": "89087832-c6df-4033-f67b-3356d675bf48"
},
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Lemmas: ['Natural', 'Language', 'Processing', 'is', 'fascinating', '.', 'It', 'enables', 'computer', 'to', 'understand', 'human', 'language', '!']\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"2.5 Stop Words Removal"
],
"metadata": {
"id": "62aKLv4cWK4l"
}
},
{
"cell_type": "code",
"source": [
"from nltk.corpus import stopwords\n",
"\n",
"stop_words = set(stopwords.words('english'))\n",
"filtered_tokens = [token for token in tokens if token.lower() not in stop_words]\n",
"print(\"Tokens after Stop Word Removal:\", filtered_tokens)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "HGsGcS97WIc8",
"outputId": "5d572f5c-461c-4f69-e08d-2c7ae3445d1f"
},
"execution_count": 7,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Tokens after Stop Word Removal: ['Natural', 'Language', 'Processing', 'fascinating', '.', 'enables', 'computers', 'understand', 'human', 'language', '!']\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"2.6. Dependency Parsing"
],
"metadata": {
"id": "l6cvxTbqWRTL"
}
},
{
"cell_type": "code",
"source": [
"nlp = spacy.load(\"en_core_web_sm\")\n",
"doc = nlp(text)\n",
"\n",
"print(\"Dependency Parsing:\")\n",
"for token in doc:\n",
" print(f\"\\n{token.text} --> {token.dep_} --> {token.head.text}\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "AGWREIQ5WOOp",
"outputId": "2ea03a79-1180-41ea-d7cc-555f2388cac3"
},
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Dependency Parsing:\n",
"\n",
"Natural --> compound --> Language\n",
"\n",
"Language --> compound --> Processing\n",
"\n",
"Processing --> nsubj --> is\n",
"\n",
"is --> ROOT --> is\n",
"\n",
"fascinating --> acomp --> is\n",
"\n",
". --> punct --> is\n",
"\n",
"It --> nsubj --> enables\n",
"\n",
"enables --> ROOT --> enables\n",
"\n",
"computers --> nsubj --> understand\n",
"\n",
"to --> aux --> understand\n",
"\n",
"understand --> ccomp --> enables\n",
"\n",
"human --> amod --> language\n",
"\n",
"language --> dobj --> understand\n",
"\n",
"! --> punct --> enables\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"2.7 Parts of Speech Tagging"
],
"metadata": {
"id": "Pzgbg8UwWumt"
}
},
{
"cell_type": "code",
"source": [
"print(\"Part-of-Speech Tagging:\\n\")\n",
"for token in doc:\n",
" print(f\"{token.text} --> {token.pos_}\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "-JN5V8haWT0S",
"outputId": "236d32ba-4f5d-4e5f-ff3b-853eaa0fce40"
},
"execution_count": 9,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Part-of-Speech Tagging:\n",
"\n",
"Natural --> PROPN\n",
"Language --> PROPN\n",
"Processing --> NOUN\n",
"is --> AUX\n",
"fascinating --> ADJ\n",
". --> PUNCT\n",
"It --> PRON\n",
"enables --> VERB\n",
"computers --> NOUN\n",
"to --> PART\n",
"understand --> VERB\n",
"human --> ADJ\n",
"language --> NOUN\n",
"! --> PUNCT\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"3. Sentiment Analysis with NLTK's VADER"
],
"metadata": {
"id": "Ltd-DcosW_ix"
}
},
{
"cell_type": "code",
"source": [
"from nltk.sentiment import SentimentIntensityAnalyzer\n",
"\n",
"sia = SentimentIntensityAnalyzer()\n",
"sentiment = sia.polarity_scores(text)\n",
"print(\"VADER Sentiment Scores:\", sentiment)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "qkuhRYrOW0jV",
"outputId": "cac8f9b7-34d5-4cff-ea97-a257c1458722"
},
"execution_count": 10,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"VADER Sentiment Scores: {'neg': 0.0, 'neu': 0.614, 'pos': 0.386, 'compound': 0.7424}\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"4. Translation using Huggingface Transformers"
],
"metadata": {
"id": "AIVJfTwCXJXM"
}
},
{
"cell_type": "code",
"source": [
"from transformers import pipeline\n",
"\n",
"# English to French translation\n",
"translator_fr = pipeline(\"translation_en_to_fr\", model=\"Helsinki-NLP/opus-mt-en-fr\")\n",
"translation = translator_fr(text)\n",
"print(\"\\n\\nTranslation (EN->FR):\", translation[0]['translation_text'])\n",
"\n",
"print(\"\\n\\n\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "FaKMSZ7IXE5i",
"outputId": "aeb55cc3-cdd0-4242-b464-bbf2a603368e"
},
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.11/dist-packages/transformers/models/marian/tokenization_marian.py:175: UserWarning: Recommended: pip install sacremoses.\n",
" warnings.warn(\"Recommended: pip install sacremoses.\")\n",
"Device set to use cpu\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"\n",
"Translation (EN->FR): Le traitement du langage naturel est fascinant. Il permet aux ordinateurs de comprendre le langage humain!\n",
"\n",
"\n",
"\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"5. Text Generation Model Creation (Word-LSTM Model)"
],
"metadata": {
"id": "VeqTijUvXURn"
}
},
{
"cell_type": "code",
"source": [
"!pip install --upgrade datasets gcsfs fsspec --quiet"
],
"metadata": {
"id": "xGyym_LsgNrj"
},
"execution_count": 7,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Imports, setting up devices and seed\n",
"# !pip install datasets tqdm --quiet\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"from datasets import load_dataset\n",
"import re\n",
"import os\n",
"import matplotlib.pyplot as plt\n",
"from collections import Counter\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"torch.manual_seed(42)\n",
"np.random.seed(42)\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"print(\"Using device:\", device)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8ETP7K3geUEN",
"outputId": "f80f7c93-a3d3-4b0c-d520-a23d256776f2"
},
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Using device: cuda\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Load 10% of dataset and tokenize\n",
"\n",
"ds = load_dataset(\"nirajandhakal/Mahabharata-HHGTTG-Text\", split=\"train[:90%]\")\n",
"corpus = \" \".join(ds['text'])\n",
"\n",
"def tokenize(text):\n",
" # Split on whitespace and punctuation\n",
" return re.findall(r\"\\b\\w+\\b|[^\\w\\s]\", text.lower())\n",
"\n",
"tokens = tokenize(corpus)\n",
"print(f\"Number of tokens: {len(tokens)}\")\n",
"print(\"Sample tokens:\", tokens[:20])"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "vKBU1auceYXm",
"outputId": "4984aacc-b077-426f-b966-9e5938556d60"
},
"execution_count": 22,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Number of tokens: 3634450\n",
"Sample tokens: ['the', 'epicurean', 'paradox', 'the', 'epicurean', 'paradox', 'is', 'a', 'philosophical', 'argument', 'that', 'has', 'intrigued', 'thinkers', 'for', 'centuries', '.', 'it', 'is', 'an']\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Build vocabulary and Encode\n",
"vocab_size = 10000\n",
"most_common = Counter(tokens).most_common(vocab_size-2)\n",
"vocab = [w for w, _ in most_common]\n",
"word2idx = {w: i+2 for i, w in enumerate(vocab)}\n",
"word2idx[\"<PAD>\"] = 0\n",
"word2idx[\"<UNK>\"] = 1\n",
"idx2word = {i: w for w, i in word2idx.items()}\n",
"\n",
"# Encode tokens\n",
"encoded = [word2idx.get(w, 1) for w in tokens] # 1 is <UNK>\n",
"print(f\"Vocabulary size: {len(word2idx)}\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "75flr-GKec1H",
"outputId": "555722ca-8a85-4155-9bb3-89126f63b1f8"
},
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Vocabulary size: 10000\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Prepare data for training\n",
"\n",
"seq_length = 15 # Longer context for better quality\n",
"step = 1 # More overlap, more data, better quality\n",
"\n",
"sequences = []\n",
"next_words = []\n",
"for i in range(0, len(encoded) - seq_length, step):\n",
" sequences.append(encoded[i:i+seq_length])\n",
" next_words.append(encoded[i+seq_length])\n",
"\n",
"X = np.array(sequences, dtype=np.int32)\n",
"y = np.array(next_words, dtype=np.int32)\n",
"\n",
"# Train/validation split\n",
"X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.1, random_state=42)\n",
"\n",
"print(f\"Train samples: {len(X_train)}, Val samples: {len(X_val)}\")\n",
"\n",
"from torch.utils.data import TensorDataset, DataLoader\n",
"\n",
"batch_size = 256\n",
"train_dataset = TensorDataset(torch.tensor(X_train, dtype=torch.long), torch.tensor(y_train, dtype=torch.long))\n",
"val_dataset = TensorDataset(torch.tensor(X_val, dtype=torch.long), torch.tensor(y_val, dtype=torch.long))\n",
"train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n",
"val_loader = DataLoader(val_dataset, batch_size=batch_size)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "lkhqyVW2esLf",
"outputId": "8bfec172-9e2d-4ee2-e01a-69aa2d5447bf"
},
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Train samples: 391758, Val samples: 43529\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Define the Model\n",
"\n",
"class WordLSTM(nn.Module):\n",
" def __init__(self, vocab_size, embed_size, hidden_size, num_layers=3, dropout=0.3):\n",
" super().__init__()\n",
" self.embedding = nn.Embedding(vocab_size, embed_size, padding_idx=0)\n",
" self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True, dropout=dropout)\n",
" self.fc = nn.Linear(hidden_size, vocab_size)\n",
" def forward(self, x, hidden=None):\n",
" x = self.embedding(x)\n",
" out, hidden = self.lstm(x, hidden)\n",
" out = self.fc(out[:, -1, :])\n",
" return out, hidden\n",
"\n",
"embed_size = 256\n",
"hidden_size = 512\n",
"num_layers = 3\n",
"dropout = 0.3\n",
"\n",
"model = WordLSTM(len(word2idx), embed_size, hidden_size, num_layers, dropout).to(device)\n",
"loss_fn = nn.CrossEntropyLoss()\n",
"optimizer = optim.Adam(model.parameters(), lr=0.002)"
],
"metadata": {
"id": "VdxeA4U7evTC"
},
"execution_count": 7,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Train the model and plot the loss\n",
"\n",
"epochs = 10 # Increase for better quality\n",
"train_losses, val_losses = [], []\n",
"train_accuracies, val_accuracies = [], []\n",
"\n",
"def accuracy(preds, targets):\n",
" return (preds.argmax(dim=1) == targets).float().mean().item()\n",
"\n",
"for epoch in range(epochs):\n",
" model.train()\n",
" total_loss, total_acc, total_count = 0, 0, 0\n",
" for xb, yb in tqdm(train_loader, desc=f\"Train Epoch {epoch+1}/{epochs}\"):\n",
" xb, yb = xb.to(device), yb.to(device)\n",
" optimizer.zero_grad()\n",
" output, _ = model(xb)\n",
" loss = loss_fn(output, yb)\n",
" loss.backward()\n",
" optimizer.step()\n",
" total_loss += loss.item() * xb.size(0)\n",
" total_acc += accuracy(output, yb) * xb.size(0)\n",
" total_count += xb.size(0)\n",
" avg_loss = total_loss / total_count\n",
" avg_acc = total_acc / total_count\n",
" train_losses.append(avg_loss)\n",
" train_accuracies.append(avg_acc)\n",
"\n",
" # Validation\n",
" model.eval()\n",
" val_loss, val_acc, val_count = 0, 0, 0\n",
" with torch.no_grad():\n",
" for xb, yb in val_loader:\n",
" xb, yb = xb.to(device), yb.to(device)\n",
" output, _ = model(xb)\n",
" loss = loss_fn(output, yb)\n",
" val_loss += loss.item() * xb.size(0)\n",
" val_acc += accuracy(output, yb) * xb.size(0)\n",
" val_count += xb.size(0)\n",
" val_losses.append(val_loss / val_count)\n",
" val_accuracies.append(val_acc / val_count)\n",
" print(f\"Epoch {epoch+1}: Train Loss={avg_loss:.4f}, Val Loss={val_losses[-1]:.4f}, Train Acc={avg_acc:.4f}, Val Acc={val_accuracies[-1]:.4f}\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "08g9D-RlfAVt",
"outputId": "7f0a6668-54bb-4ef1-d680-248be4285512"
},
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"Train Epoch 1/10: 100%|██████████| 1531/1531 [01:16<00:00, 20.14it/s]\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 1: Train Loss=6.3144, Val Loss=6.2408, Train Acc=0.0783, Val Acc=0.0786\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"Train Epoch 2/10: 100%|██████████| 1531/1531 [01:17<00:00, 19.84it/s]\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 2: Train Loss=6.1643, Val Loss=5.7447, Train Acc=0.0869, Val Acc=0.1387\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"Train Epoch 3/10: 100%|██████████| 1531/1531 [01:17<00:00, 19.65it/s]\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 3: Train Loss=5.2669, Val Loss=4.9505, Train Acc=0.1835, Val Acc=0.2157\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"Train Epoch 4/10: 100%|██████████| 1531/1531 [01:18<00:00, 19.56it/s]\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 4: Train Loss=4.6935, Val Loss=4.7041, Train Acc=0.2291, Val Acc=0.2411\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"Train Epoch 5/10: 100%|██████████| 1531/1531 [01:17<00:00, 19.73it/s]\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 5: Train Loss=4.3577, Val Loss=4.5889, Train Acc=0.2505, Val Acc=0.2542\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"Train Epoch 6/10: 100%|██████████| 1531/1531 [01:17<00:00, 19.68it/s]\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 6: Train Loss=4.1002, Val Loss=4.5632, Train Acc=0.2639, Val Acc=0.2616\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"Train Epoch 7/10: 100%|██████████| 1531/1531 [01:18<00:00, 19.58it/s]\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 7: Train Loss=3.8865, Val Loss=4.5903, Train Acc=0.2751, Val Acc=0.2651\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"Train Epoch 8/10: 100%|██████████| 1531/1531 [01:17<00:00, 19.68it/s]\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 8: Train Loss=3.7002, Val Loss=4.6680, Train Acc=0.2864, Val Acc=0.2686\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"Train Epoch 9/10: 100%|██████████| 1531/1531 [01:17<00:00, 19.75it/s]\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 9: Train Loss=3.5370, Val Loss=4.7425, Train Acc=0.2969, Val Acc=0.2683\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"Train Epoch 10/10: 100%|██████████| 1531/1531 [01:17<00:00, 19.71it/s]\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Epoch 10: Train Loss=3.3925, Val Loss=4.8263, Train Acc=0.3082, Val Acc=0.2688\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(model)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "IXtEKalQjAEG",
"outputId": "4628b64f-b075-4f88-8efd-e95cd2a87067"
},
"execution_count": 9,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"WordLSTM(\n",
" (embedding): Embedding(10000, 256, padding_idx=0)\n",
" (lstm): LSTM(256, 512, num_layers=3, batch_first=True, dropout=0.3)\n",
" (fc): Linear(in_features=512, out_features=10000, bias=True)\n",
")\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Plot Training and Validation Curves\n",
"\n",
"plt.figure(figsize=(12,5))\n",
"plt.subplot(1,2,1)\n",
"plt.plot(train_losses, label='Train Loss')\n",
"plt.plot(val_losses, label='Val Loss')\n",
"plt.xlabel('Epoch')\n",
"plt.ylabel('Loss')\n",
"plt.title('Loss Curve')\n",
"plt.legend()\n",
"plt.grid(True)\n",
"\n",
"plt.subplot(1,2,2)\n",
"plt.plot(train_accuracies, label='Train Acc')\n",
"plt.plot(val_accuracies, label='Val Acc')\n",
"plt.xlabel('Epoch')\n",
"plt.ylabel('Accuracy')\n",
"plt.title('Accuracy Curve')\n",
"plt.legend()\n",
"plt.grid(True)\n",
"\n",
"plt.tight_layout()\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 507
},
"id": "vHm3p94_hDm5",
"outputId": "308aa0f2-63aa-4ff4-9f77-7d02843bbede"
},
"execution_count": 10,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1200x500 with 2 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA3JxJREFUeJzs3Xd4FNXbxvHvbnpIIZCQRoAQegkdpHcCCArSLYAiiIoNKxaKDbuorz+wIahUFRRBgRAMKCC9d0IJkEINCYTUnfePlcUISIBNNoH7c1252D0ze84zezJk9tkz55gMwzAQEREREREREREpRGZHByAiIiIiIiIiIrceJaVERERERERERKTQKSklIiIiIiIiIiKFTkkpEREREREREREpdEpKiYiIiIiIiIhIoVNSSkRERERERERECp2SUiIiIiIiIiIiUuiUlBIRERERERERkUKnpJSIiIiIiIiIiBQ6JaVERERERERERKTQKSklInY3ZcoUTCYT69atc3Qo+bJp0ybuvfdewsLCcHNzo1SpUnTo0IGvv/6a3NxcR4cnIiIixdD//vc/TCYTTZo0cXQoxVJycjLPPPMM1apVw9PTkxIlStCgQQNef/11UlJSHB2eiNiJs6MDEBFxpC+//JLhw4cTGBjIfffdR+XKlUlLSyMmJoYhQ4aQmJjIiy++6OgwRUREpJiZNm0aFSpUYM2aNezbt49KlSo5OqRiY+3atXTt2pWzZ89y77330qBBAwDWrVvHW2+9xfLly1m8eLGDoxQRe1BSSkRuWX/99RfDhw+nadOm/Prrr3h7e9u2Pfnkk6xbt45t27bZpa1z585RokQJu9QlIiIiRduBAwdYuXIlc+bM4aGHHmLatGmMGTPG0WFdVlG7RklJSaFnz544OTmxceNGqlWrlmf7G2+8wRdffGGXtorasYvcinT7nog4zMaNG+nSpQs+Pj54eXnRvn17/vrrrzz7ZGdnM27cOCpXroy7uzulS5emRYsWREdH2/ZJSkri/vvvp2zZsri5uREcHMydd97JwYMH/7P9cePGYTKZmDZtWp6E1AUNGzZk8ODBAMTGxmIymYiNjc2zz8GDBzGZTEyZMsVWNnjwYLy8vIiLi6Nr1654e3tzzz33MGLECLy8vEhPT7+krQEDBhAUFJTndsHffvuNli1bUqJECby9vbn99tvZvn37fx6TiIiION60adPw8/Pj9ttvp3fv3kybNu2y+6WkpPDUU09RoUIF3NzcKFu2LAMHDuTEiRO2fTIyMhg7dixVqlTB3d2d4OBg7rrrLuLi4gD7XKMA/PHHH/Tp04dy5crh5uZGWFgYTz31FOfPn78k7l27dtG3b18CAgLw8PCgatWqvPTSSwD8/vvvmEwm5s6de8nrpk+fjslkYtWqVVd87z777DOOHj3KBx98cElCCiAwMJCXX37Z9txkMjF27NhL9qtQoYLtOg4uTi+xbNkyHnnkEcqUKUPZsmX54YcfbOWXi8VkMuX5knLXrl307t2bUqVK4e7uTsOGDZk3b94Vj0dE/ptGSomIQ2zfvp2WLVvi4+PDc889h4uLC5999hlt2rRh2bJltvkXxo4dy/jx43nwwQdp3LgxqamprFu3jg0bNtCxY0cAevXqxfbt23nssceoUKECx44dIzo6mvj4eCpUqHDZ9tPT04mJiaFVq1aUK1fO7seXk5NDVFQULVq04L333sPT05MKFSrw6aefsmDBAvr06ZMnll9++YXBgwfj5OQEwLfffsugQYOIiori7bffJj09nYkTJ9KiRQs2btx4xeMSERERx5s2bRp33XUXrq6uDBgwgIkTJ7J27VoaNWpk2+fs2bO0bNmSnTt38sADD1C/fn1OnDjBvHnzOHLkCP7+/uTm5tKtWzdiYmLo378/TzzxBGlpaURHR7Nt2zYiIiKuObbLXaMAfP/996Snp/Pwww9TunRp1qxZwyeffMKRI0f4/vvvba/fsmULLVu2xMXFhWHDhlGhQgXi4uL45ZdfeOONN2jTpg1hYWFMmzaNnj17XvK+RERE0LRp0yvGN2/ePDw8POjdu/c1H1t+PPLIIwQEBDB69GjOnTvH7bffjpeXF7Nnz6Z169Z59p01axY1a9akVq1agPX6tXnz5oSGhvLCCy9QokQJZs+eTY8ePfjxxx8vOV4RyQdDRMTOvv76awMw1q5de8V9evToYbi6uhpxcXG2soSEBMPb29to1aqVraxOnTrG7bfffsV6Tp8+bQDGu+++e00xbt682QCMJ554Il/7//777wZg/P7773nKDxw4YADG119/bSsbNGiQARgvvPBCnn0tFosRGhpq9OrVK0/57NmzDcBYvny5YRiGkZaWZpQsWdIYOnRonv2SkpIMX1/fS8pFRESk6Fi3bp0BGNHR0YZhWP/+ly1b9pJrjtGjRxuAMWfOnEvqsFgshmEYxuTJkw3A+OCDD664jz2uUQzDMNLT0y8pGz9+vGEymYxDhw7Zylq1amV4e3vnKftnPIZhGKNGjTLc3NyMlJQUW9mxY8cMZ2dnY8yYMZe0809+fn5GnTp1/nOffwIuW2f58uWNQYMG2Z5fuD5t0aKFkZOTk2ffAQMGGGXKlMlTnpiYaJjNZuPVV1+1lbVv396oXbu2kZGRYSuzWCxGs2bNjMqVK+c7ZhG5SLfviUihy83NZfHixfTo0YOKFSvayoODg7n77rv5888/SU1NBaBkyZJs376dvXv3XrYuDw8PXF1diY2N5fTp0/mO4UL9l7ttz14efvjhPM9NJhN9+vTh119/5ezZs7byWbNmERoaSosWLQCIjo4mJSWFAQMGcOLECduPk5MTTZo04ffffy+wmEVEROTGTJs2jcDAQNq2bQtY//7369ePmTNn5rlN/8cff6ROnTqXHV1jMpls+/j7+/PYY49dcZ/r8e9rFLBeU11w7tw5Tpw4QbNmzTAMg40bNwJw/Phxli9fzgMPPHDJSPN/xjNw4EAyMzP54YcfbGWzZs0iJyeHe++99z9jS01NLdDrs6FDh9pGpl/Qr18/jh07lucWyB9++AGLxUK/fv0AOHXqFEuXLqVv376kpaXZrs9OnjxJVFQUe/fu5ejRowUWt8jNSkkpESl0x48fJz09napVq16yrXr16lgsFg4fPgzAq6++SkpKClWqVKF27do8++yzbNmyxba/m5sbb7/9Nr/99huBgYG0atWKd955h6SkpP+MwcfHB4C0tDQ7HtlFzs7OlC1b9pLyfv36cf78edvcA2fPnuXXX3+lT58+tou5Cwm4du3aERAQkOdn8eLFHDt2rEBiFhERkRuTm5vLzJkzadu2LQcOHGDfvn3s27ePJk2akJycTExMjG3fuLg4221hVxIXF0fVqlVxdrbfrCtXukaJj49n8ODBlCpVCi8vLwICAmy3s505cwaA/fv3A1w17mrVqtGoUaM8c2lNmzaN22677aqrEPr4+BTY9RlAeHj4JWWdO3fG19eXWbNm2cpmzZpF3bp1qVKlCgD79u3DMAxeeeWVS67PLkxir2s0kWunOaVEpEhr1aoVcXFx/PzzzyxevJgvv/ySDz/8kEmTJvHggw8C1pXyunfvzk8//cSiRYt45ZVXGD9+PEuXLqVevXqXrbdSpUo4OzuzdevWfMVxpW8j//mN5z+5ublhNl+a97/tttuoUKECs2fP5u677+aXX37h/Pnztm/hACwWC2CdVyooKOiSOux5YSoiIiL2s3TpUhITE5k5cyYzZ868ZPu0adPo1KmTXdu0xzVKbm4uHTt25NSpUzz//PNUq1aNEiVKcPToUQYPHmy7NrkWAwcO5IknnuDIkSNkZmby119/8X//939XfV21atXYtGkTWVlZuLq6XnO7F1zp+P85IuwCNzc3evTowdy5c/nf//5HcnIyK1as4M0337Ttc+E9eOaZZ4iKirps3VdLuInIpfTJRkQKXUBAAJ6enuzevfuSbbt27cJsNhMWFmYrK1WqFPfffz/3338/Z8+epVWrVowdO9aWlAKIiIjg6aef5umnn2bv3r3UrVuX999/n+++++6yMXh6etKuXTuWLl3K4cOH87R3OX5+foB1lZx/OnToUH4P26Zv37589NFHpKamMmvWLCpUqMBtt92W51gAypQpQ4cOHa65fhEREXGMadOmUaZMGT799NNLts2ZM4e5c+cyadIkPDw8iIiIyLOq2+VERESwevVqsrOzcXFxuew+9rhG2bp1K3v27GHq1KkMHDjQVv7P1Y4B27QLV4sboH///owcOZIZM2Zw/vx5XFxc8nwJdyXdu3dn1apV/PjjjwwYMOCq+/v5+V1y7FlZWSQmJl71tf/Ur18/pk6dSkxMDDt37sQwjDzxXjh2FxcXXZ+J2JFu3xORQufk5ESnTp34+eefOXjwoK08OTmZ6dOn06JFC9vtdSdPnszzWi8vLypVqkRmZiZgXbkuIyMjzz4RERF4e3vb9rmSMWPGYBgG9913X545ni5Yv349U6dOBaB8+fI4OTmxfPnyPPv873//y99B/0O/fv3IzMxk6tSpLFy4kL59++bZHhUVhY+PD2+++SbZ2dmXvP748ePX3KaIiIgUrPPnzzNnzhy6detG7969L/kZMWIEaWlptlv4e/XqxebNm5k7d+4ldRmGYdvnxIkTlx1hdGEfe1yjXJhj6UKdFx5/9NFHefYLCAigVatWTJ48mfj4+MvGc4G/vz9dunThu+++Y9q0aXTu3Bl/f/+rxjJ8+HCCg4N5+umn2bNnzyXbjx07xuuvv257HhERccmxf/7551ccKXUlHTp0oFSpUsyaNYtZs2bRuHHjPLf6lSlThjZt2vDZZ59dNuGl6zOR66ORUiJSYCZPnszChQsvKX/iiSd4/fXXiY6OpkWLFjzyyCM4Ozvz2WefkZmZyTvvvGPbt0aNGrRp04YGDRpQqlQp1q1bxw8//MCIESMA2LNnD+3bt6dv377UqFEDZ2dn5s6dS3JyMv379//P+Jo1a8ann37KI488QrVq1bjvvvuoXLkyaWlpxMbGMm/ePNtFj6+vL3369OGTTz7BZDIRERHB/Pnzr2vugPr161OpUiVeeuklMjMzL/nW0MfHh4kTJ3LfffdRv359+vfvT0BAAPHx8SxYsIDmzZvna/i7iIiIFJ558+aRlpbGHXfccdntt912GwEBAUybNo1+/frx7LPP8sMPP9CnTx8eeOABGjRowKlTp5g3bx6TJk2iTp06DBw4kG+++YaRI0eyZs0aWrZsyblz51iyZAmPPPIId955p12uUapVq0ZERATPPPMMR48excfHhx9//PGyi8h8/PHHtGjRgvr16zNs2DDCw8M5ePAgCxYsYNOmTXn2HThwIL179wbgtddey1csfn5+zJ07l65du1K3bl3uvfdeGjRoAMCGDRuYMWMGTZs2te3/4IMPMnz4cHr16kXHjh3ZvHkzixYtylcC7J9cXFy46667mDlzJufOneO99967ZJ9PP/2UFi1aULt2bYYOHUrFihVJTk5m1apVHDlyhM2bN19TmyICOGzdPxG5aV1YcvdKP4cPHzYMwzA2bNhgREVFGV5eXoanp6fRtm1bY+XKlXnqev31143GjRsbJUuWNDw8PIxq1aoZb7zxhpGVlWUYhmGcOHHCePTRR41q1aoZJUqUMHx9fY0mTZoYs2fPzne869evN+6++24jJCTEcHFxMfz8/Iz27dsbU6dONXJzc237HT9+3OjVq5fh6elp+Pn5GQ899JCxbdu2yy63XKJEif9s86WXXjIAo1KlSlfc5/fffzeioqIMX19fw93d3YiIiDAGDx5srFu3Lt/HJiIiIoWje/fuhru7u3Hu3Lkr7jN48GDDxcXFOHHihGEYhnHy5EljxIgRRmhoqOHq6mqULVvWGDRokG27YRhGenq68dJLLxnh4eGGi4uLERQUZPTu3duIi4uz7WOPa5QdO3YYHTp0MLy8vAx/f39j6NChxubNmy+pwzAMY9u2bUbPnj2NkiVLGu7u7kbVqlWNV1555ZI6MzMzDT8/P8PX19c4f/58ft5Gm4SEBOOpp54yqlSpYri7uxuenp5GgwYNjDfeeMM4c+aMbb/c3Fzj+eefN/z9/Q1PT08jKirK2Ldvn1G+fHlj0KBBtv0uXJ+uXbv2im1GR0cbgGEymWzXq/8WFxdnDBw40AgKCjJcXFyM0NBQo1u3bsYPP/xwTccnIlYmw/jXOEsRERERERGRG5STk0NISAjdu3fnq6++cnQ4IlIEaU4pERERERERsbuffvqJ48eP55k8XUTknzRSSkREREREROxm9erVbNmyhddeew1/f382bNjg6JBEpIjSSCkRERERERGxm4kTJ/Lwww9TpkwZvvnmG0eHIyJFmEZKiYiIiIiIiIhIodNIKRERERERERERKXRKSomIiIiIiIiISKFzdnQAhc1isZCQkIC3tzcmk8nR4YiIiEgRYhgGaWlphISEYDbru7v/omsqERERuZL8XlPdckmphIQEwsLCHB2GiIiIFGGHDx+mbNmyjg6jSNM1lYiIiFzN1a6pbrmklLe3N2B9Y3x8fOxef3Z2NosXL6ZTp064uLjYvX65ceqj4kH9VPSpj4oH9dO1SU1NJSwszHa9IFemaypRHxUP6qeiT31UPKifrk1+r6luuaTUheHlPj4+BXYB5enpiY+Pj35Riyj1UfGgfir61EfFg/rp+uh2tKvTNZWoj4oH9VPRpz4qHtRP1+dq11SaLEFERERERERERAqdklIiIiIiIiIiIlLolJQSEREREREREZFCd8vNKSUiInI9cnNzyc7OdnQY1yw7OxtnZ2cyMjLIzc11dDgO5+LigpOTk6PDuKVc77mj313HcXV1/c/lu0VEROxFSSkREZH/YBgGSUlJpKSkODqU62IYBkFBQRw+fFiTd/+tZMmSBAUF6f0oYDd67uh313HMZjPh4eG4uro6OhQREbnJKSklIiLyHy58qC5Tpgyenp7F7sOxxWLh7NmzeHl53fIjHwzDID09nWPHjgEQHBzs4Ihubjd67uh31zEsFgsJCQkkJiZSrly5Yvd/noiIFC9KSomIiFxBbm6u7UN16dKlHR3OdbFYLGRlZeHu7q4P9oCHhwcAx44do0yZMrqVr4DY49zR767jBAQEkJCQQE5OjpY9FxGRAqW/8CIiIldwYR4cT09PB0ci9nShP4vjHGHFhc6d4u3CbXuay0tERAqaklIiIiJXodtXbi7qz8Kj97p4Ur+JiEhhUVJKREREREREREQKnZJSIiIiclUVKlRgwoQJjg5DpFjS+SMiInJ5SkqJiIjcREwmU54fJycn/Pz8cHJywmQyMXbs2Ouqd+3atQwbNuyGYmvTpg1PPvnkDdUhUpD+ff78+8eR588FM2bMwMnJiUcffdQu9YmIiDiSVt8TERG5iSQmJtoez5o1i9GjR7NmzRq8vb0xm814eXnZthuGQW5uLs7OV78cCAgIKJB4RYqSy50/u3fvtpUVhfPnq6++4rnnnuOzzz7j/fffx93d3W51i4iIFDaNlBIREbmJBAUF2X58fX0xmUwEBgYSFBTErl278Pb25rfffqNBgwa4ubnx559/EhcXx5133klgYCBeXl40atSIJUuW5Kn337cfmUwmvvzyS3r27ImnpyeVK1dm3rx5NxT7jz/+SM2aNXFzc6NChQq8//77ebb/73//o3Llyri7uxMYGEjv3r1t23744Qdq166Nh4cHpUuXpkOHDpw7d+6G4pFbz+XOnwvPi8L5c+DAAVauXMkLL7xAlSpVmDNnziX7TJ482XYeBQcHM2LECNu2lJQUHnroIQIDA3F3d6dWrVrMnz//+t8wERGRG6SklJ3NXneEg2nWb89EROTmYxgG6Vk5hf5jz78rL7zwAm+99RY7d+4kMjKSs2fP0rVrV2JiYti4cSOdO3eme/fuxMfH/2c948aNo2/fvmzZsoWuXbtyzz33cOrUqeuKaf369fTt25f+/fuzdetWxo4dyyuvvMKUKVMAWLduHY8//jivvvoqu3fvZuHChbRq1Qqwjm4ZMGAADzzwADt37iQ2Npa77rpLf4uLmOs5d85n5Rapcwcce/58/fXX3H777fj6+nLvvffy1Vdf5dk+ceJEHn30UYYNG8bWrVuZN28elSpVAsBisdClSxdWrFjBd999x44dO3jrrbdwcnK6sTdERESKpcOn0vlsWRwZ2bkOjUO379nRmfRsxs7fSXauM3MSVtCzfig96oZSwb+Eo0MTERE7OZ+dS43Riwq93R2vRuHpap8/26+++iodO3a0PS9VqhR16tSxPX/ttdeYO3cu8+bNyzPK4t8GDx7MgAEDAHjzzTf5+OOPWbNmDZ07d77mmD744APat2/PK6+8AkCVKlXYsWMH7777LoMHDyY+Pp4SJUrQrVs3vL29KV++PPXq1QOsSamcnBzuuusuypcvD0Dt2rWvOQYpWDfDuQOOO38sFgtTpkzhk08+AaB///48/fTTHDhwgPDwcABef/11nn76aZ544gnb6xo1agTAkiVLWLNmDTt37qRKlSoAVKxY8XreAhERKaaSzmSwYGsiv2xOYNPhFADC/UvQqWaQw2LSSCk7OpeVQ5eaQbiaDQ6dSmfCkr20eS+WHp+uYOrKg5w8m+noEEVERGjYsGGe52fPnuWZZ56hevXqlCxZEi8vL3bu3HnVkR6RkZG2xyVKlMDHx4djx45dV0w7d+6kefPmecqaN2/O3r17yc3NpWPHjpQvX56KFSty3333MW3aNNLT0wGoU6cO7du3p3bt2vTp04cvvviC06dPX1ccIlfjqPMnOjqac+fO0bVrVwD8/f3p2LEjkydPBuDYsWMkJCTQvn37y75+06ZNlC1b1paQEhGRW8OJs5l8+9ch+n62iqZvxfDa/B1sOpyC2QTNIkrj5ebYsUoaKWVHISU9eL9PbVq4H8YcVpdftibzx97jbDqcwqbDKbw6fwetKvvTo14onWoE4eGq4dIiIsWNh4sTO16Ncki79lKiRN4RvM888wzR0dG89957VKpUCQ8PD3r37k1WVtZ/1uPi4pLnuclkwmKx2C3Of/L29mbDhg3ExsayePFiRo8ezdixY1m7di0lS5YkOjqalStXsnjxYj755BNeeuklVq9ebRtBIo53reeOxWIhLTUNbx/rJP030q49Oer8+eqrrzh16hQeHh62MovFwpYtWxg3blye8su52nYREbl5nEnPZtH2JH7ZksDKuJPkWi7eyt6wvB/d64TQpXYQZbwdv1iGklIFwM0JutYNoXej8hxLy2D+5kR+3nSUzUfO8Pvu4/y++zglXJ2IqhlEj3qhNIsojbOTBq2JiBQHJpPJrrcCFQUrVqxg8ODB9OzZE7CO/Dh48GChxlC9enVWrFhxSVxVqlSxzXnj7OxMhw4d6NChA2PGjKFkyZIsXbqUu+66C5PJRPPmzWnevDmjR4+mfPnyzJ07l5EjRxbqcciVXeu5Y7FYyHF1wtPV+YaSUgWtMM6fkydP8vPPPzNz5kxq1qxpK8/NzaVFixYsXryYzp07U6FCBWJiYmjbtu0ldURGRnLkyBH27Nmj0VIiIjehs5k5LNmRzC+bE1i+9zjZuRcTUZFlfekeGULXyGBCSxatLylurqvqIqiMtzsPtAjngRbhxB0/y88bjzJ301EOnzrPnI1HmbPxKAHebnSPDKFnvVBqhfpgMpkcHbaIiNxCKleuzJw5c+jevTsmk4lXXnmlwEY8HT9+nE2bNuUpCw4O5umnn6ZRo0a89tpr9OvXj1WrVvF///d//O9//wNg/vz57N+/n1atWuHn58evv/6KxWKhatWqrF69mpiYGDp16kSZMmVYvXo1x48fp3r16gVyDCL/VBjnz7fffkvp0qXp27fvJdeJXbt25auvvqJz586MHTuW4cOHU6ZMGbp06UJaWhorVqzgscceo3Xr1rRq1YpevXrxwQcfUKlSJXbt2oXJZLqueeBERMTxzmfl8vvuY/yyOYGlu46RmXPx70+1IG+61wnh9trBRXqeayWlClFEgBcjO1XlqY5V2BCfwk8bjzJ/SwLH0zKZvOIAk1ccICKgBD3qhtKjXihhpTwdHbKIiNwCPvjgAx544AGaNWuGv78/zz//PKmpqQXS1vTp05k+fXqestdee42XX36Z2bNnM3r0aF577TWCg4N59dVXGTx4MAAlS5Zkzpw5jB07loyMDCpXrsyMGTOoWbMmO3fuZPny5UyYMIHU1FTKly/P+++/T5cuXQrkGET+qTDOn8mTJ9OzZ8/LfnHZq1cv7rvvPk6cOMGgQYPIyMjgww8/5JlnnsHf35/evXvb9v3xxx955plnGDBgAOfOnaNSpUq89dZbdo1VREQKVmZOLn/sOcEvWxKI3pFMetbF1fMq+pegW50QukcGUznQ24FR5p/JuMXWS05NTcXX15czZ87g4+Nj9/qzs7P59ddf6dq16yVzBVxOVo6FP/YeZ+7Go0TvSM6T2WxY3o8764XSrXYwfiVc7R7rrepa+0gcQ/1U9N0KfZSRkWFb2crd3fH33F8Pi8VCamoqPj4+RfoWqML0X/1a0NcJN5P/eq/sce7od9dx8tt/t8LfgZuB+qnoUx8VD47sp+xcCyvjTjJ/cwILtyeRlpFj2xZa0oPudULoFhlMzZCic+dVfq+pNFLKwVydzbSvHkj76oGkZWSzaHsyP208yoq4E6w7dJp1h07z6i/baV2lDD3qhdCheiDudp6wU0RERERERESKjlyLwdqDp/hlcwK/bUvi1LmLC2iU8XajW2QI3esEUzesZJFJRF0PJaXsLS0J7/NHr+ul3u4u9G5Qlt4NypJ0JoNfNifw06ajbE9IZcnOZJbsTMbLzZkutawTpN9WsTRO5uL7yyciIiIiIiIiVoZhsPFwCr9sTmDBlkSOpWXatpUq4UrX2kF0iwyhUYVSN00uQGOh7en4bpy/7sRtce/B2eQbqirI152hrSqy4PGWLH6qFY+0iSC0pAdnM3P4fv0R7vlyNc3eiuHNX3eyPeEMt9hdmCIiIrecTz/9lAoVKuDu7k6TJk1Ys2bNFfedM2cODRs2pGTJkpQoUYK6devy7bff5tnHMAxGjx5NcHAwHh4edOjQgb179xb0YYiIiMg/GIbBtqNnGP/bTlq8/Tt3/W8lX684yLG0THzcnenbsCzfPNCYNS+25/UetW+6wSkaKWVPXmXAxQPPtAQs3w+E+xeAy40vt1gl0JvnOlfjmU5VWXfoNHM3HuXXrYkkp2by+fL9fL58P1UCvehRL5Q764YWuSUeRURE5MbMmjWLkSNHMmnSJJo0acKECROIiopi9+7dlClT5pL9S5UqxUsvvUS1atVwdXVl/vz53H///ZQpU4aoqCgA3nnnHT7++GOmTp1KeHg4r7zyClFRUezYsaPYzqEmIiJSXOxNTuOXzQn8siWRAyfO2cpLuDrRsUYg3SJDaFnFHzfnm3v6HiWl7MnDj5x+0zE+b4drwnr46RHoPRnsdH+n2WyicXgpGoeXYuwdNYjdfZyfNh4lZucx9iSf5Z2Fu3ln4W4ah5eiZ71QutYKxtdTE+WJiIgUdx988AFDhw7l/vvvB2DSpEksWLCAyZMn88ILL1yyf5s2bfI8f+KJJ5g6dSp//vknUVFRGIbBhAkTePnll7nzzjsB+OabbwgMDOSnn36if//+BX5MIiIit5qDJ84xf0sCv2xOZHdymq3czdlM++pl6BYZQtuqZfBwvbkTUf+kpJS9lYpgTfjjNN//Hqbtc8C/CrQdZfdm3JydiKoZRFTNIM6cz2bhtkTmbjzKX/tPseaA9WfMz9tpWy2AnvVCaVutzE2fYRUREbkZZWVlsX79ekaNung9YTab6dChA6tWrbrq6w3DYOnSpezevZu3334bgAMHDpCUlESHDh1s+/n6+tKkSRNWrVqlpJSIiIidHE05z4K/E1Fbj56xlbs4mWhdJYDudUJoXz0QL7dbMz1zax51ATvpXZ3cru/jPP9xWPYWlK4EkX0KrD1fDxf6NSpHv0blSEg5z7zNCczdcJTdyWks2p7Mou3J+Lg707V2MD3qhdK4QinMN9E9qCIiIjezEydOkJubS2BgYJ7ywMBAdu3adcXXnTlzhtDQUDIzM3FycuJ///sfHTt2BCApKclWx7/rvLDt3zIzM8nMvDjhampqKmBdIjs7OzvPvtnZ2RiGgcViwWKx5PNI87owX+aFeqTwWCwWDMMgOzsbJ6crf6l5od//3f9StKifij71UfFwLf10PC2T37Yns2BrEhviU2zlTmYTTSuWomutIDrVKIOvx4U7m4ybrv/zezxKShUQo87dcDoOVnwEPz8KfuUhrHGBtxtS0oPhrSMY3jqCnYmp/LTxKD9vSiApNYOZaw8zc+1hQnzduaNuKD3rhVI1yLvAYxIREZHC5+3tzaZNmzh79iwxMTGMHDmSihUrXnJrX36NHz+ecePGXVK+ePFiPD0985Q5OzsTFBTE2bNnycrKuuQ11yItLe3qO4ldZWVlcf78eZYvX05OTs5V94+Oji6EqORGqZ+KPvVR8XClfjqbDVtOmdhwwsS+VBMG1oEgJgwifKBeaQt1Sht4uyRDcjIrbmxttCIvPT09X/spKVWQ2o+Fk3Gwaz7MGABDl1qTU4WkerAP1YN9eK5zNVYfOMnPGxP4dWsiCWcymLQsjknL4qge7EOPuiHcUTeEYF9NkC4iIlLU+Pv74+TkRHJy3qvX5ORkgoKCrvg6s9lMpUqVAKhbty47d+5k/PjxtGnTxva65ORkgoOD89RZt27dy9Y3atQoRo4caXuemppKWFgYnTp1wsfHJ8++GRkZHD58GC8vr+ueNN0wDNLS0vD29sZkp/k5JX8yMjLw8PCgVatW/9l/2dnZREdH07FjR1xcNI9pUaV+KvrUR8XD5fopLSOb6J3HWLA1iRVxp8i1GLb964b50rVWEF1qBRLkc+stIHJhRPXVKClVkMxmuOtzmNwZkrbA9H4wZDG4+1z9tXbkZDbRLMKfZhH+jLuzJkt3HWPuxqPE7j7GzsRUdiam8tbCXTStWJoe9ULpXCsIH3f9Zygicitr06YNdevWZcKECY4O5Zbn6upKgwYNiImJoUePHoD19qqYmBhGjBiR73osFovt9rvw8HCCgoKIiYmxJaFSU1NZvXo1Dz/88GVf7+bmhpub2yXlLi4ul3yIys3NxWQyYTabMZvN+Y7x3/ECtnqKk+J+/pjNZkwm02X79nLyu584lvqp6FMfFQ/ZhoklO47zy+YElu0+TlbuxVvMa4b40L1OCLfXDiaslOd/1HLzy+/vspJSBc21BAyYCV+0g+M74YcHrM+dHPPWu7s40bV2MF1rB5OSnsWCrYn8tPEoaw+eZmXcSVbGneTln7bRsXogPeqF0rpKAK7OxetCUETkVta9e3eys7NZuHDhJdv++OMPWrVqxebNm4mMjLyhdqZMmcKTTz5JSkrKDdUj+TNy5EgGDRpEw4YNady4MRMmTODcuXO21fgGDhxIaGgo48ePB6y32jVs2JCIiAgyMzP59ddf+fbbb5k4cSJgTfQ8+eSTvP7661SuXJnw8HBeeeUVQkJCbImvW1FhnT8XnD9/ntDQUMxmM0ePHr1s0k9ERBzvfFYuMTuSmbLHzPPrYsnIvpiIqlTGizvqhNAtMpiKAV4OjLJ4UlKqMPiGwt0zYXIX2BcNi1+CLm87OipKerpyT5Py3NOkPIdPpVsnSN94lH3HzrJgayILtiZS0tOF22sHM6JdJd3eJyJSDAwZMoRevXpx5MgRypYtm2fb119/TcOGDe32gVoKT79+/Th+/DijR48mKSmJunXrsnDhQttE5fHx8XlGE507d45HHnmEI0eO4OHhQbVq1fjuu+/o16+fbZ/nnnuOc+fOMWzYMFJSUmjRogULFy687tvtbgaFff78+OOP1KxZE8Mw+Omnn/L0j4iIONaZ89n8vusYC7clsWzPcc5n5wJmwEL50p50jwyhW51gqgbqNvMboSEwhSWknvVWPoDVk2DNF46N51/CSnnyaNtKRD/VivmPteDBFuEEeLuRkp7NtNXxPDh1nW0VHBERKbq6detGQEAAU6ZMyVN+9uxZvv/+e4YMGcLJkycZMGAAoaGheHp6Urt2bWbMmGHXOOLj47nzzjvx8vLCx8eHvn375pkTafPmzbRt2xZvb298fHxo0KAB69atA+DQoUN0794dPz8/SpQoQc2aNfn111/tGl9xNGLECA4dOkRmZiarV6+mSZMmtm2xsbF5+vz1119n7969nD9/nlOnTrFy5cpLEh4mk4lXX32VpKQkMjIyWLJkCVWqVCmswymSCvv8+eqrr7j33nu59957+eqrry7Zvn37drp164aPjw/e3t60bNmSuLg42/bJkydTs2ZN3NzcCA4OvqbbOUVE5FLH0zKZvjqegZPX0PD1aJ6ctYmF25M4n51LiK877YItzBnehNhn2vBMVFWqBfkoIXWDNFKqMNW4A9qPgZhx8NvzUKoiVGrv6KjyMJlM1Ar1pVaoL6O6VmfFvhMM/2492xNSWb73BK2rBDg6RBERxzIMyM7faiJ25eIJ+bjocXZ2ZuDAgUyZMoWXXnrJVv7999+Tm5vLgAEDOHv2LA0aNOD555/Hx8eHBQsWcN999xEREUHjxje+UqzFYrElpJYtW0ZOTg6PPvoo/fr1IzY2FoB77rmHevXqMXHiRJycnNi0aZNt7oFHH32UrKwsli9fTokSJdixYwdeXhoOX+xd67ljsVj3z3KyztN5vfJ57sCl58+FDxoFcf7ExcWxatUq5syZg2EYPPXUUxw6dIjy5a2L4hw9epRWrVrRpk0bli5dio+PDytWrLCthjdx4kRGjhzJW2+9RZcuXThz5gwrVqy4xjdHREQOn0pn0fYkFm9PZu2hU/xzLEalMl50rhlE51pBVAnw4LfffqN2qK8SUXakpFRha/EUnNgLm6fD94NhSDSUqeboqC7LyWyiVZUABjQux1d/HmBi7D4lpUREstPhzZDCb/fFBOs8hfnwwAMP8O6777Js2TJatWoFwNSpU+nVqxe+vr74+vryzDPP2PZ/7LHHWLRoEbNnz7ZLUiomJoatW7dy4MABwsLCAPjmm2+oWbMma9eupVGjRsTHx/Pss89SrZr1b2DlypVtr4+Pj6dXr17Url0bgIoVK95wTFIEXOO5YwZK2qPdazh3IO/506ZNG8B66569z5/JkyfTpUsX/Pz8AIiKiuLrr79m7NixAHz66af4+voyc+ZMW8L2nyPZXn/9dZ5++mmeeOIJW1mjRo3y3b6IyK3KMAz2HTvLwm1JLNqRxLajeVeJiyzrS1TNIKJqBlGpzMUvxbKzsws71FuCbt8rbCYTdJ8A5ZpBZipM7wvnTjg6qv/0YMtwXJxM/LX/FBvjTzs6HBERuYpq1arRrFkzJk+eDMD+/fv5448/GDJkCGBdGe21116jdu3alCpVCi8vLxYtWkR8fLxd2t+5cydhYWG2hBRAjRo1KFmyJDt37gSsE3c/+OCDdOjQgbfeeivPLUmPP/44r7/+Os2bN2fMmDFs2bLFLnGJ5Me/z599+/bZ/fzJzc1l6tSp3Hvvvbaye++9lylTpthWHdy0aRMtW7a87OpFx44dIyEhgfbti9aIexGRosowDDYfTuHthbto/8EyOn64nPej97DtaCpmEzQJL8WY7jVY8UI75o1owaNtK+VJSEnB0UgpR3B2g37fwZft4PRBmHkPDJpnLS+Cgn09uLNuKD+sP8KkZXF8dl9DR4ckIuI4Lp7WkReOaPcaDBkyhMcee4xPPvmEadOmERERQevWrQF49913+eijj5gwYQK1a9emRIkSPPnkk2RlZRVE5Jc1duxY7r77bhYsWMBvv/3GmDFjmDlzJj179uTBBx8kKiqKBQsWsHjxYsaPH8/777/PY489VmjxSQG4xnPHYrGQmpaGj7d3nkncr6vda3Th/Pn000/5+uuv7X7+LFq0iKNHj14yz1dubi4xMTF07NgRD48rLzDzX9tERMQqJ9fC2oOn/741L4mEMxm2ba5OZppXKk3nWkF0qB5Iaa+i+Vn8VqCklKOUKA13fw9fdoDDf8G8x6HnpHzPeVDYhreuyA/rj7B4RzL7jp1V1lhEbl0m0zXdCuQoffv25YknnmD69OnMnDmTRx55xDb/wYoVK7jzzjttozQsFgt79uyhRo0admm7evXqHD58mMOHD9tGS+3YsYOUlJQ8bVSpUoUqVarw1FNPMWDAAL7++mt69uwJQFhYGMOHD2f48OGMGjWKL774Qkmp4u5azx2LBVxyra+5kaTUdfjn+fPNN9/w8MMP2/X8+eqrr+jfv3+eed8A3njjDb766is6duxIZGQkU6dOJTs7+5LRUt7e3lSoUIGYmBjatm17g0crInLzyMzJZcW+Eyzalkz0zmROnbv4hYGnqxNtq5YhqlYQbasG4O1+6UhUKXxKSjlSQBXoOxW+6wVbZoJ/ZWj1zNVf5wCVynjTsUYg0TuS+Xx5HO/0ruPokERE5D94eXnRr18/XnrpJVJTUxk0aJBtW+XKlfnhhx9YuXIlfn5+fPDBByQnJ19zUio3N5dNmzblKXNzc6NDhw7Url2be+65hwkTJpCTk8MjjzxC69atadiwIefPn+fZZ5+ld+/ehIeHc+TIEdauXUuvXr0AePLJJ+nSpQtVqlTh9OnT/P7771SvXv2G3xOR/Lpw/owaNYrU1FQGDx5s23aj58/x48f55ZdfmDdvHrVq1cqzbeDAgfTs2ZNTp04xYsQIPvnkE/r378+oUaPw9fXlr7/+onHjxlStWpWxY8cyfPhwypQpQ5cuXUhLS2PFihVK3orILedsZg6xu4+xaHsyv+86xtnMHNu2kp4udKgeSOeaQbSo7I+7i5MDI5XLUVLK0SLaQtd3YcFIWPoalK4ENXs4OqrLerhNBNE7kpm78SgjO1YlyNfd0SGJiMh/GDJkiG3URUjIxQmmX375Zfbv309UVBSenp4MGzaMHj16cObMmWuq/+zZs9SrVy9PWUREBPv27ePnn3/mscceo1WrVpjNZjp37swnn3wCgJOTEydPnmTgwIEkJyfj7+/PXXfdxbhx4wBrsuvRRx/lyJEj+Pj40LlzZz788MMbfDdErs2F86dr1652PX+++eYbSpQocdn5oNq3b4+Hhwffffcdjz/+OEuXLuXZZ5+ldevWODk5UbduXZo3bw7AoEGDyMjI4MMPP+SZZ57B39+f3r172+fgRUSKuNPnsojemczi7Uks33uCrByLbVugjxtRNYPoXDOIxuGlcHbSVNpFmZJSRUGjIXByH/z1P5j7EJQMg9AGjo7qEvXL+dE4vBRrDpziqz/389Lt9rnNQ0RECkbTpk3Jzc0lNTXvqjKlSpXip59++s/XxsbG/uf2wYMH5xk98m/lypXj559/vuw2V1dXZsyYccXXXkheiThS06ZNMf65LvjfbvT8efrpp3n66acvu83V1ZXTpy8uKhMZGcmiRYuuWNdDDz3EQw899J+xiIjcLBLPnGfx9mQWbU9i9YFT5Fou/h9dobQnUbWsiag6ZUtiNhfNaXHkUkpKFRWdXoeTcbB3EcwYAEOXgm9ZR0d1iYfbRLDmwCmmr45nRNvK+HrqPlwRERERERGxvwMnzrFwWxKLtiex6XBKnm3Vg33oXDOIzrWCqBLoZZv7T4oXJaWKCrMT9P4KvoqCY9then94YCG4Fa0JxdtUCaBakDe7ktL49q+DjGhX2dEhiYiIiIiIyE3AMAx2JKayaFsSi7Ynszs5zbbNZLLevdO5ZhBRNYMoV/raV1eVokdJqaLEzRvunglftIfkrTBnKPT7zpqwKiJMJhMPt4ngiZmb+HrFQR5sWVGTxYmIiIiIiMh1sVgMNsSfZtH2JBZuT+LwqfO2bc5mE00jShNVM4hONQIp46N5jW82SkoVNSXLwYAZ8HVX2P0rLBljvbWvCLm9djDvLtrNkdPn+X7dYe5rWsHRIYmIiIiIiEgxkZVj4a/9J1m0PYnFO5I5npZp2+buYqZV5QA61wqifbVATRlzk1NSqigq2xB6ToQfHoCVn0DpytBg0NVfV0icncwMa1WR0T9v57Pl+xnQuJxWNBAREREREZErOp+Vy7I9x1m8PYklO5NJzcixbfN2d6Z9tTJ0rhVEqyoBeLoqVXGrUE8XVbV6wYl9EPsmLBgJfhWgYmtHR2XTp0EYE5bs5cjp8yzYmsiddUMdHZKISIGxWCxX30mKDfVn4dF7XTxdbtVBEZHrceZ8Nkt3JbNoWzKxe46RkX3x74K/lysda1gnKm9asTSuzhrocCtSUqooa/0cnNgD236A2ffBg0vBv5KjowLAw9WJ+5tV4P3oPUxatp876oRotQMRuem4urpiNptJSEggICAAV1fXYvd/ncViISsri4yMDMzmW/tizzAMsrKyOH78OGazGVdXV0eHdNOyx7mj313HMAyD48ePYzKZcHHRLTMicu1Oncti4Tbr/FAr950gx3Ix0V3Wz4Oov1fMq1/ODydz8bquEvtTUqooM5ngzk8hJR6OrIHpfeDBGPAs5ejIALivaXkmLotjZ2Iqy/Ycp03VMo4OSUTErsxmM+Hh4SQmJpKQkODocK6LYRicP38eDw+PYpdQKyienp6UK1dOiY4CZI9zR7+7jmMymShbtixOTlrMRkTyJzUjm8Xbk/llcwJ/7jtB7j8SUVUCvYj6e8W8miE++j9d8nB4Uuro0aM8//zz/Pbbb6Snp1OpUiW+/vprGjZseMXXxMbGMnLkSLZv305YWBgvv/wygwcPLrygC5OLO/SfZl2R79R+mD0Q7p0Dzo7/drekpyt3Ny7Hl38eYGJsnJJSInJTcnV1pVy5cuTk5JCbm+vocK5ZdnY2y5cvp1WrVhr1ADg5OeHs7KwL4kJwo+eOfncdx8XFRQkpEbmqc5k5LNmZzPwtiSzbfZys3Iu35tUM8aFr7WA61woiIsDLgVFKUefQpNTp06dp3rw5bdu25bfffiMgIIC9e/fi5+d3xdccOHCA22+/neHDhzNt2jRiYmJ48MEHCQ4OJioqqhCjL0ReZeDuWfBVJzj4Byx4Cu74P+tIKgcb0jKcqasOsvrAKTbEn6Z+uSv3nYhIcXXhNpbi+MHYycmJnJwc3N3di2X8UrzdyLmj310RkaInIzuX2N3H+GVLIjE7k/PMEVW5jBfd64TQLTKYikpEST45NCn19ttvExYWxtdff20rCw8P/8/XTJo0ifDwcN5//30Aqlevzp9//smHH3548yalAAJrQJ+vYXpf2Pgd+FeB5k84OiqCfT3oUTeU79cfYVJsHJ8PvPIINxERERERESlesnIs/LnvOPM3J7J4RzJnMy+umlehtCfdIkPoXieEqkHeDoxSiiuHJqXmzZtHVFQUffr0YdmyZYSGhvLII48wdOjQK75m1apVdOjQIU9ZVFQUTz755GX3z8zMJDMz0/Y8NTUVsA4Jz87OvvGD+JcLdRZE3VRog7njGzgtHoURPYZc3woYVbvav51r9ECzcny//giLdySz8+hpKpUp2lnxAu0jsRv1U9GnPioe1E/XRu+TiIgI5ORa+Gv/KeZvSeC3bUmcOX/x72OIrzvd6oTQPTKEWqGaI0pujEOTUvv372fixImMHDmSF198kbVr1/L444/j6urKoEGDLvuapKQkAgMD85QFBgaSmppqmwzzn8aPH8+4ceMuqWfx4sV4enra72D+JTo6umAqNkKI9G9P+IkYmPMgKyq/zBnPCgXT1jWo7Wdm62kzY2f+yd2VisfyzwXWR2JX6qeiT31UPKif8ic9Pd3RIYiIiDiExWKw7tBp5m9J4NetiZw4m2XbFuDtxu21g+leJ5h6YX6YtWqe2IlDk1IWi4WGDRvy5ptvAlCvXj22bdvGpEmTrpiUulajRo1i5MiRtuepqamEhYXRqVMnfHx87NLGP2VnZxMdHU3Hjh0Lbv4DSxSWWQNw3v87rRMmknP/YvAOLpi28im4dgp9P1/DhlNOvNu8DcG+7g6N578USh/JDVM/FX3qo+JB/XRtLoyoFhERuRUYhsHmI2eYvzmB+VsSSUrNsG3z83Shcy1rIqpJeGmclIiSAuDQpFRwcDA1atTIU1a9enV+/PHHK74mKCiI5OTkPGXJycn4+PhcMkoKwM3NDTc3t0vKC3rC2oKt3wX6TIGvOmE6sRuX7++D+38D14Ib+XU1jSsG0CS8FKsPnOKbvw7zcrcaV3+RgxXXSYtvNeqnok99VDyon/JH75GIiNzsDMNgZ2Iav2xJYP6WBA6fOm/b5u3mTKeaQXSvE0zzSv64OJkdGKncChyalGrevDm7d+/OU7Znzx7Kly9/xdc0bdqUX3/9NU9ZdHQ0TZs2LZAYiyyPktYV+b5sD4mbYO5D0GcqmB33n8bwNhGsPnCKGWviGdGuEiU9XR0Wi4iIiIiIiFy079hZ5m9J4JfNCcQdP2cr93BxokONQLpHBtOqSgDuLk4OjFJuNQ5NSj311FM0a9aMN998k759+7JmzRo+//xzPv/8c9s+o0aN4ujRo3zzzTcADB8+nP/7v//jueee44EHHmDp0qXMnj2bBQsWOOowHKdUOPSbBt/cATvnwdLXoMMYh4XTpkoA1YK82ZWUxrerDvFY+8oOi0VERERERORWd/hUOr9sSeCXzYnsTLx4i7qrs5m2VQPoXieEdtXK4Onq0NSA3MIc+pvXqFEj5s6dy6hRo3j11VcJDw9nwoQJ3HPPPbZ9EhMTiY+Ptz0PDw9nwYIFPPXUU3z00UeULVuWL7/8kqioKEccguOVbwp3fGIdKfXnB+BfGere7ZBQTCYTD7eJ4ImZm5iy8iAPtqyIh6uy7CIiIiIiIoUl8cx5FmxJ5JctiWw+nGIrdzabaFnZn+51QuhYIxBvd92yLo7n8HRot27d6Nat2xW3T5ky5ZKyNm3asHHjxgKMqpip0x9O7IU/3oN5j4NfBSjfzCGh3F47mHcX7ebI6fN8v/4wA5tWcEgcIiIiIiIit4rjaZn8ti2R+ZsTWXPwlK3cbIKmEaXpHhlCVM0g/EpoihUpWhyelBI7afsSnNwLO36GmffA0BgoVbHQw3B2MjOsVUVG/7ydz5fv5+7G5XDW5HgiIiIiIiJ2lZKexcJtSczfksjKuBNYjIvbGlXwo3udELrUCibA+9KFv0SKCiWlbhZmM/SYBCnxkLARpveDIdHWCdELWZ8GYXy0ZC9HTp9nwdZE7qwbWugxiIiIiIiI3GzSMrKJ3pHM/C2JLN9znJx/ZKLqlPWle50QutYOJqTkpSvTixRFSkrdTFw9YcBM+KIdnNgD3w+Ge74Hp8K9V9jD1YnBzSrwfvQeJsbGcUedEEwmU6HGICIiIiIicjM4n5VLzK5k5m9OZOnuY2TlWGzbqgf70C0ymO6RIZQr7enAKEWuj5JSNxvvIGtianJn2P87/PYc3P4BFHJSaGDTCkxaFseupDRi9xynbdUyhdq+iIiIiIhIcZWZk8uy3ceZvyWRJTuTSc/KtW2rGFCC7pEhdK8TTKUy3g6MUuTGKSl1MwqOhF5fwsy7Yd1k8K8Ctz1cqCH4erowoHE5vvzzABNj45SUEhERERER+Q/ZuRZW7D/G/C2JLNqeRFpGjm1bWCkPukWG0D0yhOrB3roTRW4aSkrdrKp1hU6vweKXYdGL1knPq0QVaghDWoYzddVB1hw4xfpDp2lQ3q9Q2xcRERERESnKci0Gf+0/xaz9Zsa+s4zT6dm2bYE+btZEVJ0Q6pT1VSJKbkpKSt3Mmo6wzi214Rv44QEYshgCaxZa88G+HvSoG8r3648waVkcXwxsWGhti4iIiIiIFEUWi8H6+NPM35zAr9uSOJ6WCZiBbEqXcKVr7WC61wmhYXk/zGYlouTmpqTUzcxkgq7vw6kDcPAP64p8Q5eCV+HdSvdQ64r8sOEI0TuS2XcsTfc8i4iIiIjILccwDDYdTmH+lkQWbEkkKTXDts3Xw5nq3lkM79qIFpXL4OxkdmCkIoVLSambnbMr9P0GvuoIJ/dZ55ka9Au4FM4SoZXKeNOxeiCLdyQzadl+3utTp1DaFRERERERcSTDMNh2NJX5WxNYsCWRI6fP27Z5uznTsWYg3SNDaFzelyWLF9I8orQSUnLLUVLqVuBZCu6eDV+0gyNr4edHoddXhbYi3/A2ESzekczPm44ysmMVQkoWTkJMRERERESkMBmGwa6kNOZvsSaiDp5Mt23zdHWiQ/VAukUG06pKAO4uTgBkZ2dfqTqRm56SUreK0hHQ7zv4tgds+xFKV4a2owql6frl/GgSXorVB07x1Z8HeKVbjUJpV0REREREpDDsO5bGL5sTWbA1kX3HztrK3V3MtKtWhm6RIbStWgYPVycHRilS9CgpdSsJbwndPoR5j8Gyt6B0JYjsUyhNP9wmgtUHTjFjTTyPtatESU/XQmlXRERERESkIBw8cY75WxKYvyWRXUlptnJXJzOtqwbQLTKYDtUDKeGmj90iV6Kz41ZTfyCc2AsrP7bexudXHsIaF3izrasEUD3Yh52JqXyz6hCPt69c4G2KiIiIiIjY0+FT6SzYmsj8LQlsO5pqK3c2m2hZ2Z9ukSF0rBmIj7uLA6MUKT6UlLoVdRgLJ+Ng9wLrxOcPxliTUwXIZDIxvHVFnpi5iSkrDzK0ZUUNXRURERERkSIv8cx5FmxJZP6WRDYdTrGVO5lNNIsoTbfIYKJqBuluEJHroKTUrcjsBHd9Dl93hqStMKM/PLAI3H0KtNnbawfz3uLdHD51ntnrDjOoWYUCbU9EREREROR6HEvL4LetSczfksDag6dt5SYT3BZemtsjg+lSK4jSXm4OjFKk+FNS6lbl5gUDZllX5Du2A354AAbMBKeC+5VwdjIzrGVFXvl5O58v38/dTcrhoiVPRURERESkCDh1LovftiUyf3Miqw+cxGJc3Naogh/dIkPoUjuIMt7ujguyODAMyEiBnEwwOYHJDGbzPx47/etx4awKX+wZBhgWsOT8/ZNr/ddWlntx27/LjNx/bP9XWXBd8A502GEpKXUr8w2FATPg666wLxoWvwRd3i7QJvs0DGPCkr0cTbEOge1RL7RA2xMREREREbmSM+nZLNqexC9bElgZd5Lcf2Si6oaVpFtkMLdHBhPs6+HAKIsQiwXOHYe0BEi98HP0H4///sk5fw2Vmq6QrDLbr9y23eky+/673OnvJFrecrMBtY7sx7wwFjCuISH0X4mkC2W5fyeJcvImj4x/PS4Ifb+FGncUTN35oKTUrS60Ptz1GcweCKsnWVfkazy0wJpzd3Hi/uYVeG/xHiYti+POuiGYlBkXEREREZFCkpaRTfSOZOZvSeSPvcfJzr2YiKoV6kO3yBBurx1MWClPB0bpALk5cDbpyomm1ARISwRLdv7qMznlM5FiWPfLLaCki504AREAxx0cyOXYEmjO1iTahcSc7bnzZcr+fl7A0/hcjZJSAjXuhPajIeZV+O15KFURKrUvsObuu60CE2Pj2JWURuzu47StVqbA2hIRERERETmXmUPMrmPM35xA7J7jZOVYbNuqBXn/PSIqhHD/Eg6MsgBlZ/xrdNNlRjmdO2YdwXM1JjN4BYJPyN8/oRf/9Q62PvYOBpe/b3O0WKz1Xrhd7JLHlosjgWyPr1Sea72N7bLllr/bymf5Je1cKS5reW5uDvviDlCpchWcXNz+Hmn1j6TPhVFVly3753PnK5SZ87HPZRJOF0Z2FVNKSolVi5FwYi9sngHfD4Yh0VCmWoE05evpwt1NyvHFHweYuCxOSSkREREREbG7jOxcft91jPlbEonZlUxG9sWES0RACbpFhtC9TjCVyng7MEo7yEy7crLpQiIq/WT+6jK7gE/wxUSTd3DepJNPiDUhdS1zEZvNgJninn6wZGez6/yvVGzdFScXF0eHc9Mo3r8VYj8mE3T/CE4fgviVML0vDF0KJfwLpLkhLSoyZeVB1hw4xfpDp2lQ3q9A2hERERERkVtHZk4uy/ecYP6WBJbsSOZc1sVbwsqX9qRbZDDdIkOoFuRd9KcRMQw4f/rKiaYLP5mp+avP2eMyo5tC8pZ5+hfrUTdS/CgpJRc5u0G/7+DLdnD6IMy6Fwb+bC23syBfd3rWC2X2uiNMWhbHFwMb2r0NERERERG5+WXnWvhz3wnmb05k8Y4k0jJybNtCS3rYElG1Qn2KTiLKkgtnkyE1EdPpw4QfX4L59/WXzumUk5G/+tx8/5FcuszoJp8QcC+ple6kyFFSSvIqURrung1fdoT4VTDvceg5qUD+8xrWKoLv1x8hekcye5PTqBxYzIfNioiIiIhIocjJtbBq/0kWbElk4fYkUtIvTr4d5ONO19rBdKsTTL2wkoWfiMpMg9TEv0c0/fPfxIuThZ9Nts3f5AxEAhy5Qn2epS9NMHn/c8RTMLjps5QUT0pKyaUCqkLfKfBdb9gyE/wrQ6tn7N5MpTJedKoRyKLtyXy2fD/v9alj9zZEREREROTmYBgGm4+c4Yf1h/ltaxInz2XZtvl7udG1dhDdIkNoWN4Ps7kAElH/GN102YRTWqL1cVZa/uozmcErCIt3EEnnTARWro9TybL/Sj79Y8JwkZuQklJyeRHtoOu7sGAkLH3NmpiqcafdmxneOoJF25P5aeNRRnasQkhJD7u3ISIiIiIixde5zBx+3pTAtNWH2J5wcf4kP08XOtcKpntkME0qlsbpRhJR1zi66arcfMA7KO9qdLZ/g60jnbzKgNmJ3Oxs1v76K12jNIG23HqUlJIrazTEuiLf6omw4Bmo1AFc7btEar1yftxWsRR/7T/FV38e4JVuNexav4iIiIiIFE87ElKZtvoQP29K4GymdZ4oV2czt9cOpke9UJpFlMbF6SqTcufmwLljV0g4/SPxlHU2f0GZnKyrz/kEXyHhFGJNRul2OpF8UVJK/lvHV2H3r5ByCP6aWCC38T3cphJ/7V/DjDXxjGhbCb8SrnZvQ0REREREir6M7Fzmb0lk2upDbIxPsZVX9C/B3U3K0at+2YufFzJS4dQ/bpuzy+imf4xkupB4uszoJhGxDyWl5L85u0Lbl2DuMFjxMTR8ADxL2bWJVpX9qRHsw47EVL5ZdYgnOlS2a/0iIiIiIlK07TuWxrTV8fy4/gipf6+e52w2EVUriHsbBXObZxKmI0vgt9WQtNW6Op1dRzcFg5tXAR6hiFyOklJydbV7w4oJcGwHrPgIOo6za/Umk4nhbSJ4fMZGpqw8wNBW4Xi66ldTRERERORmlpmTy8JtSUxfHc/qA6ds5bVKZvFwxCnalDhAieQNMGsD5Jy/fCVXGt30z4RTiQCNbhIpovTJX67O7ATtXoGZA2D1Z3Dbw9b7pO2oa60g3i3lweFT55m99jCDm4fbtX4RERERESkaDp08x/Q18Xy/7ghnzp2nqukw9zntpavfEeqwB8+zh2D7v17k7gtlG0HZxhDaAPzKa3STyE1ASSnJn6pdrH8AjqyBZe9Atw/sWr2zk5lhrSJ45adtfPHHAe65rfzVJy0UEREREZFiITvXQszOZH5euY2Mg6upb97LJ6a91HWPowQZ1p3+eTdeQDVrEiqssfVziH8VMOvzgcjNRkkpyR+TCdqPhqndYMNUaDYCSlW0axN9GpTloyV7OJpynvlbEuhZr6xd6xcRERERkUJksZC8fxNbVi4m48Bf1MjdxURzIvx7XSNXbyjb8GICqmwD8PBzSMgiUriUlJL8C28JEe0gbin8Ph56fWHX6t1dnLi/eTjvLtrNpNj99KgbislksmsbIiIiIiJSQM6nwNF1WOLXkLL7T9yPbSTQSKfjhe1/D3TKLhmBS/km1iRUWGPrqCjN+SRyS1JSSq5N+9HWpNTW76HFkxBY067V39ukPP/7fR+7k9P4ffcx2lULtGv9IiIiIiJiBxYLnNwLh9dYp/g4vAbj+G5MGJiBC+t1nzPcOOhWDdfw26hQty0u5ZvgYufVvEWk+FJSSq5NSD2o0QN2/AQxr8HdM+1ava+nC/fcVp7Pl+9nUux+JaVERERERIqCzDQ4sg6OrP07EbUWMlLy7GICDloC2WBUZqdTNcrUaEG71m2pGVjSERGLSDGgpJRcu3Yvw85fYM9vEL8ayjWxa/UPNA/n6xUHWHPwFOsPnaJBeX2TIiIiIiJSaAwDTu2Hw6svJqCO7QDDkme3HLM724hgVVZFNlgqs8FSmQrlK3BPk3I8XTsYdxfdkici/01JKbl2/pWh7t2w8VuIGQeDF1gnQreTIF937qpXllnrDjMxdj9fDlJSSkRERESkwGSdg6MbbLfhcWQtpJ+8ZDfDN4xTfnX5PT2c6QmBbMkJIwdnvNycuatRKNOalKNakI8DDkBEiislpeT6tHkBtsyGQytgXwxU7mDX6oe1rsjs9YdZsjOZPclpVAn0tmv9IiIiIiK3JMOA0wcv3oZ3eDUkbwcjN+9+Tm4QUhfKNuJcYEN+ORXKV5vOs3fXWdsukWV9ubtxObrXCaGEmz5aisi10/8ccn18y0KjB+GvT62jpSLagdlst+ojAryIqhHEwu1JfLZsP+/3rWO3ukVEREREbhnZ5yl1djfmVfsgYYM1EXXu2KX7+YRC2UZ/r4jXBCOwFpuTMpj21yF++TOBjOzjAHi4OHFn3RDublKOyLIlC/dYROSmo6SUXL+WI2HDVEjaYp34vNZddq1+eJsIFm5P4udNRxnZqQqhJT3sWr+IiIiIyE3JMCD+L1g/BecdP9EyJwP2/mO72QWC61gTUBcSUb5lATibmcPPm44yfc5atiek2l5SNdCbe24rR496ofi4uxTyAYnIzUpJKbl+Jfyh6QhY9hb8/gZUvwOc7PcrVTesJE0rlmbV/pN89ccBRnevYbe6RURERERuOumnYPMMWD8VTuwGrCviZTj74hrREnO5JtYEVHBdcHHP89IdCalMW32InzYe5VyW9VY+V2cz3WoHc89t5ahfzg+THeeRFREBJaXkRjV9FNZ8Dif3waZp0GCQXasf3iaCVftPMmNNPI+1q4RfCVe71i8iIiIiUqwZBhz803oHw46fITfLWu7iCbXuIqfOfSzalETX22/H7JJ3hNP5rFzmb0lg2up4Nh1OsZVX9C/B3U3K0at+WV1/i0iBst8kQHJrcveBlk9bHy97G7Iz7Fp9q8r+1Aj24Xx2Lt+sOmTXukVERIqTTz/9lAoVKuDu7k6TJk1Ys2bNFff94osvaNmyJX5+fvj5+dGhQ4dL9h88eDAmkynPT+fOnQv6METEXs6dgBUfw/81hKndYOv31oRUUCTc/gE8vRvu/BQjtMElK2XvO5bGuF+20+TNJTz7wxY2HU7B2Wzi9shgpg9tQszTrXmwZUUlpESkwGmklNy4Rg/CX/+D1KOw9ktoNsJuVZtMJoa3ieDxGRuZsvIAQ1uF4+mqX1sREbm1zJo1i5EjRzJp0iSaNGnChAkTiIqKYvfu3ZQpU+aS/WNjYxkwYADNmjXD3d2dt99+m06dOrF9+3ZCQ0Nt+3Xu3Jmvv/7a9tzNza1QjkdErpPFAgeXw/opsHM+WLKt5a5eULs3NBgMIfUu+9LMHAu/bj/KtNXxrDlwylZe1s+Du5uUo0+DMAK89X+AiBQufbqXG+fiDq2fh18ehz/eh/oDrSOo7KRrrSDeK+VJ/Kl0Zq89zODm4XarW0REpDj44IMPGDp0KPfffz8AkyZNYsGCBUyePJkXXnjhkv2nTZuW5/mXX37Jjz/+SExMDAMHDrSVu7m5ERQUVLDBi8iNS0u2TpWxYSqcPnixPKS+dfqMWr3AzfuyLz10Kp15h8yMfXcZp9OtSSyzCdpXD+SeJuVoVTkAs1lzRYmIYygpJfZR9x5Y+bF1bqlVn0LbUXar2tnJzNBWFXnlp2188ccB7rmtPC5OuvNURERuDVlZWaxfv55Roy7+bTWbzXTo0IFVq1blq4709HSys7MpVapUnvLY2FjKlCmDn58f7dq14/XXX6d06dJ2jV9ErpPFAvuXWkdF7f4NLDnWcjcfiOwL9QdBcOQVX34+K5cPl+zhyz/2YzHMQDZBPu70bxxGv0ZhBPtqZWsRcTwlpcQ+nJyh7Uvww/2w6v+g8VDr6nx20qdBWT5asoejKeeZvyWBnvXK2q1uERGRouzEiRPk5uYSGBiYpzwwMJBdu3blq47nn3+ekJAQOnToYCvr3Lkzd911F+Hh4cTFxfHiiy/SpUsXVq1ahZOT0yV1ZGZmkpmZaXuemmpdKj47O5vs7OzrObT/dKHOgqhb7EN9VEDSEjFvnoF503eYzsTbii2hDbHUG4hR/U5wLWEtvMJ7v/rAKV76aQeHTqUDUM3XwqOdI+lQPQjnv7/cVb8VHTqXigf107XJ7/ukpJTYT40eEPQhJG2BPz6Azm/arWp3Fyfubx7Ou4t2Myl2Pz3qhmpJWhERkXx46623mDlzJrGxsbi7X1wCvn///rbHtWvXJjIykoiICGJjY2nfvv0l9YwfP55x48ZdUr548WI8PT0LJnggOjq6wOoW+1Af2YFhITB1C+VPxhJ4ZhNmLABkOXlypFRzDpZuQ5pHGBwFji67YjXnc2BevJmVydbEU0lXg74VLdT0M7DEb2Jx/BVfKkWAzqXiQf2UP+np6fnaT0kpsR+zGdqPgWm9rBOeN30EfO03oune28ozMTaO3clp/L77GO2qBV79RSIiIsWcv78/Tk5OJCcn5ylPTk6+6nxQ7733Hm+99RZLliwhMvLKt/kAVKxYEX9/f/bt23fZpNSoUaMYOXKk7XlqaiphYWF06tQJHx/7zSV5QXZ2NtHR0XTs2BGXfy1jL0WD+sgOUo9i3jQN8+ZpmFKP2ootYbdhqTcQU7XuhLl4EJaPqn7ffZw35+0gOdU6onFAo7I826kK7k6G+qmI07lUPKifrs2FEdVXo6SU2Fel9lC+ORxaAbFvwZ3/Z7eqfT1cuLtJOT5fvp+JsXFKSomIyC3B1dWVBg0aEBMTQ48ePQCwWCzExMQwYsSVV7x95513eOONN1i0aBENGza8ajtHjhzh5MmTBAcHX3a7m5vbZVfnc3FxKdCL84KuX26c+uga5ebA3sXWuaL2RYNhHRWFhx/UuRvqD8Rcphr5nUH15NlMXp2/g583JQBQobQnb/WK5LaK1vnhLtxCo34q+tRHxYP6KX/y+x4pKSX2ZTJZR0tN7mRdIaT5E+Bf2W7VD2kRzpQVB1l78DTrDp6iYYVSV3+RiIhIMTdy5EgGDRpEw4YNady4MRMmTODcuXO21fgGDhxIaGgo48ePB+Dtt99m9OjRTJ8+nQoVKpCUlASAl5cXXl5enD17lnHjxtGrVy+CgoKIi4vjueeeo1KlSkRFRTnsOEVuaqcPwcZvYeN3kJZ4sbxCS+uk5dW7W1e1zifDMPhlSyJj523n1LkszCZ4sGVFnupQBQ/XS+eFExEpipSUEvsr1wSqdIY9C2Hp69B3qt2qDvRxp2e9UGatO8ykZXF8qaSUiIjcAvr168fx48cZPXo0SUlJ1K1bl4ULF9omP4+Pj8dsvjiuYuLEiWRlZdG7d+889YwZM4axY8fi5OTEli1bmDp1KikpKYSEhNCpUydee+21y46GEpHrlJttXTlvw1TYFwMY1nLP0lD3bmsy6jq+wE06k8HLP21jyU7rbb3Vgrx5u1ckdcJK2i92EZFC4NCk1NixYy+ZMLNq1apXXElmypQptm8EL3BzcyMjI6PAYpTr1O4V2LMIdvwECZsgpK7dqh7WuiKz1x9myc5j7E5Ko2qQt93qFhERKapGjBhxxdv1YmNj8zw/ePDgf9bl4eHBokWL7BSZiFzi1AHY8I11VNS5YxfLw1tDg8FQ7XZwvvYEsGEYzFx7mDcX7CQtMwcXJxMj2lbm4TYRuDrn94Y/EZGiw+EjpWrWrMmSJUtsz52d/zskHx8fdu/ebXuuFdiKqKBaULs3bP0eYl6F++bYreqIAC+iagSxcHsSny2P44O+de1Wt4iIiIjIdcnJgt0LrHNF7Y+9WF6iDNS7B+oPhFIVr7v6QyfP8cKPW1m1/yQAdcNK8k7vSKoE6gtaESm+HJ6UcnZ2vurKMf9kMpmuaX9xoLYvwva5EBcDB/+ECi3sVvXwNhEs3J7EvE0JPN2pKqElPexWt4iIiIhIvp2MsyaiNk2H9BN/F5ogop11VFTVLuB0/ZMi51oMvl5xgPcW7yYj24K7i5lnOlXl/ubhOJn1Bb2IFG8OT0rt3buXkJAQ3N3dadq0KePHj6dcuXJX3P/s2bOUL18ei8VC/fr1efPNN6lZs+YV98/MzCQzM9P2/MKyhNnZ2baVKOzpQp0FUXex4x2Gue69OG2YgiV6LLmDfrVOhG4HNYNKcFu4H38dOM3ny/bxctdq+X6t+qh4UD8Vfeqj4kH9dG30PolIvuRkws5frMmog39cLPcKgvr3Qb37wK/8DTezOymN537cwubDKQA0iyjNW3dFUq605w3XLSJSFDg0KdWkSROmTJlC1apVSUxMZNy4cbRs2ZJt27bh7X3pMNSqVasyefJkIiMjOXPmDO+99x7NmjVj+/btlC1b9rJtjB8//pJ5qwAWL16Mp2fB/WceHR1dYHUXJ+7Z9Whvmo7z0bWsmfkmyb717FZ3PXcTf+HEjNWHqJq9nxLX+AWU+qh4UD8Vfeqj4kH9lD/p6emODkFEirLje6yTlm+aDudP/V1ogsqdoMEgqBwFTjf+ESsrx8L/Yvfx6e/7yM418HZz5qXbq9OvUZimLxGRm4pDk1JdunSxPY6MjKRJkyaUL1+e2bNnM2TIkEv2b9q0KU2bNrU9b9asGdWrV+ezzz7jtddeu2wbo0aNYuTIkbbnqamphIWF0alTJ3x8fOx4NFbZ2dlER0fTsWNHXFyuf5juzcTkHQerPqbJ2UXk9B8FJvtMwtjFMFg28S92JKaR5F2Vx9pF5Ot16qPiQf1U9KmPigf107W5MKJaRMQm+zzsmGcdFRW/8mK5T6h1RFS9e6FkmN2a23w4hed/3MKupDQAOlQvw+s9ahPk6263NkREigqH3773TyVLlqRKlSrs27cvX/u7uLhQr169/9zfzc3tsksbu7i4FOjFeUHXX6y0GgkbpmI6tgOXXT9DZF+7Vf1wm0o8NmMj36yOZ3jbSni65v9XWn1UPKifij71UfGgfsofvUciYpO8wzoqavMMyDhjLTOZoUpn61xRlTqA2cluzZ3PyuXDJXv48o/9WAwoXcKVsXfUpFtksEZHichNq0itG3r27Fni4uIIDg7O1/65ubls3bo13/uLg3j4QfPHrY9/f8O6MomddKkVRLlSnqSkZzNr7WG71SsiIiIit6CsdNg4Db7qBBObwupJ1oSUbzlo+zI8tR0GzIAqUXZNSK2KO0mXj5bz+XJrQqpH3RCiR7ame50QJaRE5Kbm0JFSzzzzDN27d6d8+fIkJCQwZswYnJycGDBgAAADBw4kNDSU8ePHA/Dqq69y2223UalSJVJSUnj33Xc5dOgQDz74oCMPQ/Ljtodh9Wdw+iBs/AYa2afPnJ3MDGtVkZd/2saXfxzg3tvK4+JUpHKtIiIiIlIcxP8F398PaQnW52Zn68p59QdDRFu7JqEuSM3I5q3fdjF9dTwAQT7uvHlXLdpVC7R7WyIiRZFDk1JHjhxhwIABnDx5koCAAFq0aMFff/1FQEAAAPHx8ZjNFxMMp0+fZujQoSQlJeHn50eDBg1YuXIlNWrUcNQhSH65loBWz8Jvz8Kyd6HO3eBqn4nmezcoy4Qleziacp5fNidwV/3LT3ovIiIiInIJw4C//gfRo8GSA75h0PB+qHsPeAcVWLNLdyXz4pxtJKVmAHB3k3K80KUaPu66jVhEbh0OTUrNnDnzP7fHxsbmef7hhx/y4YcfFmBEUqAaDIZVn0BKPKz5DFo8ZZdq3V2cuL95OO8u2s2kZXH0qBuK2axhziIiIiJyFRmpMG8E7PjZ+rxWb+j+Ebh5FViTp85l8eov2/lpk3VEVvnSnrx1VyRNI0oXWJsiIkWV7nOSwuPsCm1etD7+cwKcT7Fb1ffeVh4vN2f2JJ/l993H7FaviIiIiNykknfAF22tCSmzC3R5F3p9WWAJKcMwmLc5gQ4fLOOnTQmYTTCsVUUWPtFKCSkRuWUpKSWFK7IvBFSHjBRY+bHdqvX1cOGeJuUAmBgbZ7d6RUREROQmtHkWfNkeTu4Dn7Jw/2/QZBgU0KTiSWcyGPrNeh6fsZFT57KoFuTN3Eea82LX6ni42n+uKhGR4kJJKSlcZido97L18V8TIS3ZblU/0CIcVycz6w6dZu3BU3arV0RERERuEjmZMH8kzB0G2ekQ0Q4eWg5hjQqkOcMwmLEmno4fLGPJzmRcnEw81aEK80a0oE5YyQJpU0SkOFFSSgpftdshtKH1QuCP9+xWbaCPO3fVDwVgkkZLiYiIiMg/pcTD5M6w7ivABK2fh3t+gBIFc+vcoZPnuPuL1Yyas5W0zBzqhJVk/mMteaJDZVyd9TFMRASUlBJHMJmg/Wjr43Vfw+mDdqt6WKuKmEwQs+sYu5PS7FaviIiIiBRje6Phs1aQsAE8/KzJqLYvWkfx21muxeDLP/YTNWE5q/afxN3FzMu3V2fOw82oGuRt9/ZERIozJaXEMSq2hoptwJINsW/Zr9oALzrXtC7d+9kyjZYSERERuaVZcmHpGzCtD5w/DSH1rLfrVe5QIM3tSU6j18SVvL5gJxnZFppWLM2iJ1vxYMuKOGl1aBGRSygpJY5zYbTU5plwbKfdqh3eOgKAeZsTOHI63W71ioiIiEgxcu4kfNcLlr8DGNBwCDywCEqWs3tTWTkWPlqyl9s//oNNh1PwdnPmrbtqM31oE8qXLmH39kREbhZKSonjhDaA6t0BA5a+brdq64SVpFlEaXIsBl/+ccBu9YqIiIhIMXF4LXzWEvb/Ds4e0PNz6PYBOLvZvanNh1O44//+5MMle8jONehQvQzRI1vTv3E5TAW0mp+IyM1CSSlxrHavgMkMu+ZbLx7s5MJoqVlrD3PqXJbd6hURERGRIswwYPXn8HUXSD0KpSvB0KVQp5/dmzqflcubv+6k5/9WsCspjVIlXPl4QD2+GNiQIF93u7cnInIzUlJKHCugKtQZYH0cM856IWEHLSv7UzPEh/PZuUxdedAudYqIiIhIEZZ5Fn4cAr89a523tMadMPR3CKxh96b+2n+SLh8t5/Pl+7EYcGfdEJaMbM0ddUI0OkpE5BooKSWO1+YFcHKFg39Yh1jbgclkso2WmrrqIOlZOXapV0RERESKoOO74Yt2sO1HMDtD1HjoMxXcfezaTFpGNi/N3Ur/z//i4Ml0gnzc+WpQQz7qX49SJVzt2paIyK1ASSlxvJLloOED1scxr9pttFSXWkGUL+1JSno2M9cctkudIiIiIlLEbP0BPm8LJ3aDdzAMXgBNHwE7j1hauiuZTh8uZ9rqeADublKOxSNb0b56oF3bERG5lSgpJUVDy2fApQQkbISd8+xSpbOTmaEtKwLw5R/7yc612KVeERERESkCcrLg1+est+xln4MKLeGh5VDuNrs2c+pcFk/O3MgDU9aReCaD8qU9mTH0Nt7sWRsfdxe7tiUicqtRUkqKBq8A6zdaYF2JL9c+t9v1blAWfy83Es5kMG9Tgl3qFBEREREHO3MUpnSFNZ9Zn7cYCff9BF5l7NaEYRjM25xAhw+W8dOmBMwmGNaqIgufaEXTiNJ2a0dE5FampJQUHc0eAw8/OLEHtsy0S5XuLk480KICAJOWxWGx2OfWQBERERFxkLjf4bOWcGQtuPvCgJnQYQw4OdutieTUDIZ+s57HZ2zk1LksqgZ6M+eR5rzYtToerk52a0dE5FanpJQUHe6+0OIp6+PYtyAn0y7V3tOkPF5uzuw9dpalu47ZpU4RERERKWQWCyx7F77tCeknISgShi2Dql3s1oRhGMxcE0+HD5axZGcyLk4mnupQhV8ea0HdsJJ2a0dERKyUlJKipfEw6wSVZw7Dusl2qdLXw4V7bisHwMRlcXapU0REREQKUfopmNEPfn8dMKD+QBgSDaXC7dZEdq6FIVPX8cKcraRl5FAnrCTzH2vJEx0q4+qsj00iIgVB/7tK0eLiAa2ftz5e/h5kptml2iHNw3F1MrP+0GnWHTptlzpFREREpBAc3QCftYa9i8HZHe78FO74BFzc7drMR0v2snTXMdxdzLx8e3XmPNyMqkHedm1DRETyUlJKip5690KpipB+Av6aaJcqy/i406tBKACfLT9glzpFREREpAAZhnXk/OQoOBMPfuHW0VH17rV7U3/tP8mnsfsAeK9PHR5sWREns8nu7YiISF5KSknR4+QCbV+yPl75iXW4th0MbVkRkwli95wg4ZxdqhQRERGRgpCVDnOHw/ynIDcLqt4Ow2IhONLuTaWkZ/HUrE0YBvRtWJZukSF2b0NERC5PSSkpmmreBUG1ITMV/vzALlVWDPCiS60gAGIS9KsvIiIiUiSd2AdftreuxmwyQ4dx0H8aeJS0e1OGYfD8j1tIPJNBRf8SjL2jpt3bEBGRK9MncymazGZoN9r6eM0XkJpgl2qHt44AYMMJE0dOn7dLnSIiIiJiJzvmwedt4NgOKFEGBv0CLZ4EU8HcSjd9TTyLtltX2ft4QD08XZ0LpB0REbk8JaWk6KrcEco1hZwMWPa2XaqMLFuSZhVLYcHE2Pk7sVgMu9QrIiIiIjcgNxsWvQSz74OsNCjXDIb/ARVaFFiTe5PTeG3+DgCe71yNWqG+BdaWiIhcnpJSUnSZTNB+jPXxhm/hZJxdqn2xS1WcTQbL9pxg8gpNei4iIiLiUKmJMLU7rPo/6/Nmj8GgeeAdVGBNZmTn8tiMjWRkW2hVJYAHmocXWFsiInJlSkpJ0Va+KVTuBEYu/P6GXaqsGuRNjwoWAN5euIutR87YpV4RERERuUYH/oDPWkL8KnDzgX7fQafXrQvfFKC3ftvFrqQ0/L1ceb9PHcxaaU9ExCGUlJKir90r1n+3/QiJW+xSZYtAg47Vy5Cda/DYjA2czcyxS70iIiIikg8WC/zxAXxzB5w7DmVqWlfXq969wJuO2ZnMlJUHAXivTx0CvN0KvE0REbk8JaWk6AuOhFq9rI+XvmaXKk0meLNHTUJ83Tl4Mp3RP22zS70iIiIichXnU2DWPRAzDgwL1BkADy6B0hEF3vSx1Aye/cH6JeeQFuG0qVqmwNsUEZErU1JKioe2L4HJCfYuhkOr7FJlSU8XJvSvh9kEczYeZc6GI3apV0RERESuIHELfN4adv8KTq7QbQL0mAiungXetMViMHL2Zk6dy6JGsA/Pda5a4G2KiMh/U1JKiofSEVD/PuvjmHFg2GfVvMbhpXiifRUAXv5pGwdOnLNLvSIiIiLyLxu+ha86wumDULIcDFkMDe+3DmEvBJ//sZ8/953Aw8WJjwfUw83ZqVDaFRGRK1NSSoqP1s+Ds7t1Isy90XardkS7SjQJL0V6Vi6PzdhAZk6u3eoWERERueVln4efH4V5IyAnAypHwbBlEFKv0ELYciSF9xbtBmBM9xpUKuNVaG2LiMiVKSklxYdPCDQean0c86p1gkw7cDKbmNC/LiU9Xdh2NJV3Fu62S70iIiIit7xT+62jozZ+ByazdQGbATPBs1ShhXA2M4fHZ2wkx2LQtXYQ/RqFFVrbIiLy35SUkuKlxUjrcsHJW2H7HLtVG+zrwbu96wDw1Z8H+H3XMbvVLSIiInJL2rUAPmsDSVvB0x/umwutngFz4X4EGfPzdg6eTCe0pAfje0ZiKqTbBUVE5OqUlJLixbMUNHvM+vj3NyA3225Vd6wRyOBmFQB4+vvNJKdm2K1uERERkVtGbg5Ej4GZd0PmGSjbGB5aDhXbFHooP286yo8bjmA2wYT+dfH1dCn0GERE5MqUlJLi57aHrd+2ndpvHQpuRy90qUb1YB9OncviqVmbyLXYZ0J1ERERkVvC2WPwbQ9YMcH6vMnDMHgB+IYWeiiHT6Xz8txtADzWrjKNKhTeLYMiIpI/SkpJ8ePmbR36DbDsbevkmXbi7uLE/91dDw8XJ1bGnWTSsji71S0iIiJyUzu0Cia1hIN/gKsX9P4aurwFzq6FHkp2roXHZ24kLTOHhuX9eKxdpUKPQURErk5JKSmeGj4AvmGQlghrvrBr1REBXrx6Z00APojew/pDp+xav4iIiMhNxTBg5Scw5XY4mwQB1WDo71DrLoeF9NGSvWyMT8Hb3ZkJ/evi7KSPPSIiRZH+d5biydkN2rxgffznB5Bxxq7V925QljvrhpBrMXh8xibOnLff3FUiIiIiNwvn3HScfrwfFr8MRi7U7gMPxkBAFYfFtCruJJ/G7gPgrbsiKevn6bBYRETkvykpJcVXZH/wrwLnT8PK/7Nr1SaTidd71KJ8aU+OppznhR+3YBiaX0pERETE5sReWu8eg3n3fDC7QNf34K4vwM3LYSGd/nteUMOAfg3DuD0y2GGxiIjI1SkpJcWXkzO0e9n6eNWncPa4Xav3dnfh4/71cDab+G1bEtPXxNu1fhEREZFiyzBw/vkhvDKTMXxC4YGF0HgomEwODMng+R+3kJSaQUX/Eoy5o4bDYhERkfxRUkqKt+p3QEg9yD4Hf7xv9+rrhJXkuc5VAXj1lx3sTkqzexsiIiIixU78X5iStpBjciVn8CIo29DRETFtdTyLdyTj4mTi4wH18HR1dnRIIiJyFUpKSfFmMkH70dbH676CFPuPZnqwRUVaVQkgM8fCYzM2cD4r1+5tiIiIiBQrqycBcKRUU/AOcnAwsDc5jdfm7wDg+c7VqBXq6+CIREQkP5SUkuKvYlsIbwW5WRD7tt2rN5tNvN+nDv5ebuxJPstrC3bYvQ0RERGRYuPMUdj5CwAHAjo6OBjIyM7lsRkbycyx0KpKAA80D3d0SCIikk9KSknxZzJB+zHWx5unw/Hddm8iwNuND/vVAWD66nh+25po9zZEREREioV1X4GRi6VcM1I9yjk6Gt76bRe7ktLw93Ll/T51MJsdN6+ViIhcGyWl5OZQtiFU6waGBZa+ViBNtKwcwPDWEQA8/+MWjpxOL5B2RERERIqs7AxYPwUAS6Nhjo0FiNmZzJSVBwF4r08dArzdHBuQiIhcEyWl5ObR7mXAZB1OfnR9gTTxdKcq1A0rSWpGDk/M3EROrqVA2hEREREpkrb9COknwTcMo0pnh4ZyLDWDZ3/YAsCQFuG0qVrGofGIiMi1U1JKbh5lqkOd/tbHMa8WSBMuTmY+GVAPbzdn1h86zYQlewukHRERKd4qVKjAq6++Sny8/RfgEHEYw7BNcE6jIWB23Op2FovByNmbOXUui5ohPrbVkkVEpHhRUkpuLm1GgdkF9sfC/mUF0kRYKU/evKs2AJ/G7mPlvhMF0o6IiBRfTz75JHPmzKFixYp07NiRmTNnkpmZ6eiwRG7M4dWQtAWc3aH+IIeG8vkf+/lz3wk8XJz4eEA93JydHBqPiIhcHyWl5ObiVx4a3m99HDPO+o1eAeheJ4R+DcMwDHhy1iZOntUHDRERuejJJ59k06ZNrFmzhurVq/PYY48RHBzMiBEj2LBhg6PDE7k+F0ZJ1e4DnqUcFsbmwym8t8i6sM3YO2oQEeDlsFhEROTGKCklN59Wz4KLp3VeqV0LCqyZMXfUICKgBMfSMnn2hy0YBZQAExGR4qt+/fp8/PHHJCQkMGbMGL788ksaNWpE3bp1mTx5sv52SPFx5ijsmGd93OQhh4VxNjOHx2duJMdicHvtYPo2DHNYLCIicuOUlJKbj1cZuO1h6+Olr4Elt0Ca8XR15v/uro+rs5mlu44xecXBAmlHRESKr+zsbGbPns0dd9zB008/TcOGDfnyyy/p1asXL774Ivfcc4+jQxTJn3WTwciF8s0hqLbDwhj98zYOnUwntKQHb/asjclkclgsIiJy45SUkptTs8fBvSQc3wVbZhdYM9WDfXj59uoAvPXbTrYdPVNgbYmISPGxYcOGPLfs1axZk23btvHnn39y//3388orr7BkyRLmzp3r6FBFri47A9ZPsT524CipnzcdZc6Go5hNMKF/XXw9XRwWi4iI2IeSUnJz8igJLZ60Po59E3KyCqyp+24rT6cagWTnGjw2YyNnM3MKrC0RESkeGjVqxN69e5k4cSJHjx7lvffeo1q1ann2CQ8Pp3///g6KUOQabJ8D6SfApyxUvd0hIcSfTOeludsAeKxdZRpVcNycViIiYj8OTUqNHTsWk8mU5+ffF2z/9v3331OtWjXc3d2pXbs2v/76ayFFK8VO44fAKwhS4i9+u1cATCYT7/SOJNjXnQMnzjH6520F1paIiBQP+/fvZ+HChfTp0wcXl8uP5ihRogRff/11IUcmco0MA1Z/Zn3caAg4ORd6CNm5Fp6YZf3ir2F5Px5rV6nQYxARkYLh8JFSNWvWJDEx0fbz559/XnHflStXMmDAAIYMGcLGjRvp0aMHPXr0YNs2JQHkMlw9ofWz1sfL34WscwXWVElPVz7qXw+zCeZsOMrcjUcKrC0RESn6jh07xurVqy8pX716NevWrXNARCLX6fAaSNwEzu5Qf5BDQvhoyV42xqfg7e7MhP51cXZy+EcYERGxE4f/j+7s7ExQUJDtx9/f/4r7fvTRR3Tu3Jlnn32W6tWr89prr1G/fn3+7//+rxAjlmKl3kDwqwDnjsFfEwu0qcbhpXi8fWUAXp67jQMnCi4JJiIiRdujjz7K4cOHLyk/evQojz76qAMiErlOqydZ/63dG0qULvTmV8Wd5NPYfQC8dVckZf08Cz0GEREpOIU//vZf9u7dS0hICO7u7jRt2pTx48dTrly5y+67atUqRo4cmacsKiqKn3766Yr1Z2ZmkpmZaXuempoKWFfDyc7OvvED+JcLdRZE3XI9TJhaPY/zzw9jrPiInLoDyXb2Agqmj4a3rMDKfSdYc/A0I6avZ9bQJrg5Ozz3WyzpXCr61EfFg/rp2tjrfdqxYwf169e/pLxevXrs2LHDLm2IFLjUBNg5z/q4ceFPcH76XBZPzdqEYUC/hmHcHhlc6DGIiEjBcmhSqkmTJkyZMoWqVauSmJjIuHHjaNmyJdu2bcPb2/uS/ZOSkggMDMxTFhgYSFJS0hXbGD9+POPGjbukfPHixXh6Ftw3LdHR0QVWt1wjw4M27mH4Zhzm4HdPsiO0H1BwfXR7Kdh2xIntCWmM+HwxPStYCqSdW4XOpaJPfVQ8qJ/yJz093S71uLm5kZycTMWKFfOUJyYm4uzs8O8ERfJn3WSw5EC5ZhAcWahNG4bB8z9uISk1g4oBJRhzR41CbV9ERAqHQ6+KunTpYnscGRlJkyZNKF++PLNnz2bIkCF2aWPUqFF5RlelpqYSFhZGp06d8PHxsUsb/5SdnU10dDQdO3a84sSmUvhMlZ3h+3updGopob3fIHrVlgLto8Bqxxg+fROxiWbu6dCANlUCCqSdm5nOpaJPfVQ8qJ+uzYUR1TeqU6dOjBo1ip9//hlfX18AUlJSePHFF+nYsaNd2hApUDmZsO7vifibFP4oqWmr41m8IxlXJzMf96+Hp6uSuSIiN6Mi9b97yZIlqVKlCvv27bvs9qCgIJKTk/OUJScnExQUdMU63dzccHNzu6TcxcWlQC/OC7p+uUY1ukHZxpiOrMHtr4+AtgXaR50jQxl8MIUpKw/y/Jzt/PZESwJ93AukrZudzqWiT31UPKif8sde79F7771Hq1atKF++PPXq1QNg06ZNBAYG8u2339qlDZECtW0OpJ8An1Co1q1Qm96TnMZr8623uT7XuSq1Qn0LtX0RESk8RWqym7NnzxIXF0dw8OXvF2/atCkxMTF5yqKjo2natGlhhCfFmckEHcYAYN70LZ6ZyVd5wY17oUs1qgf7cOrv+RByLUaBtykiIkVDaGgoW7Zs4Z133qFGjRo0aNCAjz76iK1btxIWFnZddX766adUqFABd3d3mjRpwpo1a6647xdffEHLli3x8/PDz8+PDh06XLK/YRiMHj2a4OBgPDw86NChA3v37r2u2OQmYxgXJzhvNAScCu977IzsXB6fsZHMHAutqwTwQPPwQmtbREQKn0OTUs888wzLli3j4MGDrFy5kp49e+Lk5MSAAQMAGDhwIKNGjbLt/8QTT7Bw4ULef/99du3axdixY1m3bh0jRoxw1CFIcVKhBUS0x2TJoVri3AJvzt3Fif+7ux4eLk6sjDvJpGVxBd6miIgUHSVKlGDYsGF8+umnvPfeewwcOPC6R2LNmjWLkSNHMmbMGDZs2ECdOnWIiori2LFjl90/NjaWAQMG8Pvvv7Nq1Srb1AVHjx617fPOO+/w8ccfM2nSJFavXk2JEiWIiooiIyPjumKUm8iRtZC4CZzcoP7gQm16/K872ZWUhr+XK+/1qYPZbCrU9kVEpHA5NCl15MgRBgwYQNWqVenbty+lS5fmr7/+IiDAOv9OfHw8iYmJtv2bNWvG9OnT+fzzz6lTpw4//PADP/30E7Vq1XLUIUhx0340AGVPr8K0r+An/Y0I8GLcnTUB+CB6D+sPnSrwNkVEpOjYsWMHCxcuZN68eXl+rtUHH3zA0KFDuf/++6lRowaTJk3C09OTyZMnX3b/adOm8cgjj1C3bl2qVavGl19+icVisY04NwyDCRMm8PLLL3PnnXcSGRnJN998Q0JCwn+uaiy3iNWfWf+t3QdKlC60ZpfsSGbqqkMAvNenDgHel07BISIiNxeHzik1c+bM/9weGxt7SVmfPn3o06dPAUUkN72Qulhq9MS8Yy7OswZA9Tug0+vgV77AmuzToCx/7j3BvM0JPD5jE78+0RJfD83rIiJyM9u/fz89e/Zk69atmEwmDMN6C7fJZB31kZubm++6srKyWL9+fZ7R42azmQ4dOrBq1ap81ZGenk52djalSpUC4MCBAyQlJdGhQwfbPr6+vjRp0oRVq1bRv3//fMcnN5nURNjxk/Vxk2GF1mxyagbP/rAZgCEtwmlTtUyhtS0iIo5zXUmpw4cPYzKZKFu2LABr1qxh+vTp1KhRg2HDCu+Pl8j1yL39Qw4cP0fFEzGYds6DvYuhxVPQ/Alw8bB7eyaTiTd61mLT4RTiT6Uzas4WPr27vu2DiYiI3HyeeOIJwsPDiYmJITw8nDVr1nDy5Emefvpp3nvvvWuq68SJE+Tm5hIYGJinPDAwkF27duWrjueff56QkBBbEiopKclWx7/rvLDt3zIzM8nMzLQ9v7BSYXZ2NtnZ2fk7mGtwoc6CqFuuzLzmC5wsOVjCbiPXvwb8x/tvrz6yWAyemrWR0+nZ1Aj25qn2Eep3O9K5VPSpj4oH9dO1ye/7dF1Jqbvvvpthw4Zx3333kZSURMeOHalZsybTpk0jKSmJ0aNHX0+1IoXD1YttZe+lXI+XcYl+CQ7+AbHjYeM0iHoDqne3ToxuR97uLnw8oB69J67k161JzFhzmLublLNrGyIiUnSsWrWKpUuX4u/vj9lsxmw206JFC8aPH8/jjz/Oxo0bCy2Wt956i5kzZxIbG4u7+/WvBDt+/HjGjRt3SfnixYvx9PS8kRD/U3R0wd9uL1ZmSzYdt3+BE7DeqSEJv/6ar9fdaB/FHDWxMt4JV7NBj8DTxCxeeEP1yeXpXCr61EfFg/opf9LT0/O133UlpbZt20bjxo0BmD17NrVq1WLFihUsXryY4cOHKyklxUOZGjDoF+sQ9UUvw5l4mH0fVGwDnd+GMtXs2lzdsJI8G1WV8b/tYtwv22lYwY8qgd52bUNERIqG3NxcvL2t/8f7+/uTkJBA1apVKV++PLt3776muvz9/XFyciI5Oe/KscnJyQQFBf3na9977z3eeustlixZQmRkpK38wuuSk5PzrHqcnJxM3bp1L1vXqFGjGDlypO15amqqbQJ1Hx+fazqm/MjOziY6OpqOHTte9wTxcm1MW2fjvDkVwzuYuv1foq7Tf7/v9uijLUfO8OvqNYDB2Dtq0qdB2euqR65M51LRpz4qHtRP1+bCiOqrua6kVHZ2Nm5u1okHlyxZwh133AFAtWrV8kxMLlLkmUxQsydU7gR/ToAVH8H+WJjUHBo/BG2eB3dfuzU3tGVFVsSdZPme44yYvoF5I1rg7uJkt/pFRKRoqFWrFps3byY8PJwmTZrwzjvv4Orqyueff07FihWvqS5XV1caNGhATEwMPXr0ALBNWv5fKxC/8847vPHGGyxatIiGDRvm2RYeHk5QUBAxMTG2JFRqaiqrV6/m4Ycfvmx9bm5utuu/f3JxcSnQi/OCrl/+Zhiw7gsATI0exMU9/6PfrrePzmbmMPKHreRYDG6vHcyAJhU0vUEB0rlU9KmPigf1U/7k9z26rtX3atasyaRJk/jjjz+Ijo6mc+fOACQkJFC6dOGt0CFiN64loN1L8OhqqNYNLDnw16fwSQPY+B1YLHZpxmw28X6fOvh7ubEn+Syvzd9hl3pFRKRoefnll7H8/bfj1Vdf5cCBA7Rs2ZJff/2Vjz/++JrrGzlyJF988QVTp05l586dPPzww5w7d477778fgIEDB+aZCP3tt9/mlVdeYfLkyVSoUIGkpCSSkpI4e/YsYJ3v8Mknn+T1119n3rx5bN26lYEDBxISEmJLfMkt5sg6SNgITm7QYHChNDn6520cOplOaEkP3ryrthJSIiK3oOsaKfX222/Ts2dP3n33XQYNGkSdOnUAmDdvnu22PpFiqVQ49J8G+2Lgt+fh5F74+VFYNxm6vAtlG9xwEwHebnzQtw4DJ69h2up4WlTyp0vt4Ku/UEREio2oqCjb40qVKrFr1y5OnTqFn5/fdX3w7tevH8ePH2f06NEkJSVRt25dFi5caJuoPD4+HrP54neNEydOJCsri969e+epZ8yYMYwdOxaA5557jnPnzjFs2DBSUlJo0aIFCxcuvKF5p6QYW/OZ9d/avaGEf4E39/Omo8zZcBSzCT7qX1crE4uI3KKuKynVpk0bTpw4QWpqKn5+frbyYcOGFehElyKFplJ7eHil9QIt9m04uh6+bAf17oX2Y8DrxpYpblUlgIdaV+SzZft5/sct1C7rS1k/nTsiIjeD7OxsPDw82LRpE7Vq1bKVlypV6obqHTFixBVv14uNjc3z/ODBg1etz2Qy8eqrr/Lqq6/eUFxyE0hNhO1zrY8bF/xK2vEn03lp7jYAHm9fmYYVbuzcEBGR4uu6bt87f/48mZmZtoTUoUOHmDBhArt376ZMmRv7sC5SZDi7QrPH4LF1UOdua9nG76y39K36FHJvbCnQZzpVpU5YSVIzcnhy5iZycu1zi6CIiDiWi4sL5cqVIzc319GhiOTP+q+tUxeE3QYhdQu0qexcC4/P3MjZzBwaVfBjRNtKBdqeiIgUbdeVlLrzzjv55ptvAEhJSaFJkya8//779OjRg4kTJ9o1QBGH8w6CnhNhSDQE14XMVFj0IkxqYZ0U/Tq5OJn5pH89vN2cWXfoNB/F7LVbyCIi4lgvvfQSL774IqdOnXJ0KCL/LScT1n1tfdzkoQJvbsKSPWw6nIK3uzMf9quLs9N1fRwRkf9v777jo6rSP45/ZiY9JCEkpEHoCARI6KGKNAUBxY6iIrZdFxRFXXVdCzawo4siKpbdnyg2VFCUEOk1tBB6JwFSCC0kIXXm98dANNJhZu5M8n2/XvPKnTs35zzDAXLyzDnPFakiLuqnwOrVq+nRowcA3377LZGRkezZs4f//ve/F1W8U8QjxHaC++bC4HchIAwObIb/XgvTbofDey6qyXphAbx8fWsAJs7dzpLtuY6MWEREDDJx4kQWLFhATEwMzZo1o127dpUeIm5jww9QkANBMdBisFO7WrIjl/fn7QBg/PXxKl0gIiIXV1OqsLCQoKAgAGbPns3111+P2Wymc+fO7Nlzcb+ci3gEsxnaD4e4a2DeeFjxEWyaAduSoNvD0P1h8Pa/oCavSYhh0bYDfL1yLw9PW8us0T0Iq3HqLbdFRMRz6A524jFOFjjveDdYnFds/HBBCWOmpWKzwS0dYhkYr5u8iIjIRSalmjRpwg8//MB1113Hb7/9xiOPPAJATk4OwcHBDg1QxC35h8KAV6Hdnfa79O1eCPPHw9qpcNVL0OIauIC7Kz1/TUtW7TnMjgMFPP7tOqYM76DbIouIeLDnnnvO6BBEzm3vSvvNXCw+0O4up3Vjs9l44rt1ZOUV0ah2IM9dE+e0vkRExLNc1Pa9Z599lscee4wGDRrQqVMnunTpAthXTbVt29ahAYq4tciWMHwG3PQZBNeFo+nw9Z32bX05m8+7mQAfLybe1g4fLzO/b87hk8W7nRayiIiICADLT6ySanUj1KjttG6+WJ7O7I3Z+FjMvDu0LQE+F/W5uIiIVEEXlZS68cYbSU9PZ+XKlfz2228V5/v06cPbb7/tsOBEPILJBC2vg1EpcPk/weILu+bDpK7w61NQdPS8mmkRHcy/B7YAYPysTazfd37fJyJSrdhscHAHHD9sdCRnZTabsVgsZ3yIGO5YNmyYbj9OvN9p3WzNPsaLMzcC8M/+zWhVJ8RpfYmIiOe56I8poqKiiIqKYu/evQDUrVuXTp06OSwwEY/jEwC9n4Y2t8Hsf8PmmbDsfUj7Bvo8B22G2WtSncUdneuzaFsuszdm8+CXa5jxYHdq+OrTRBGppmw2OLQTMtfC/rUnvqZC8VG49j1oe7vBAZ7Z9OnTKz0vLS1lzZo1fP7554wdO9agqET+ZNWnYC2F2ESIcc5Oh6LSch76cg3FZVZ6Xlabu7s1dEo/IiLiuS7qt12r1cpLL73Em2++SX5+PgBBQUE8+uijPP3005jP8Yu3SJVWqyEM/QK2J9vrTR3cBj+NgpWfwNVvQN32Z/xWk8nEazfGk/bOQnblFvDsj+t56+Y2rotdRMQoZ0tA/ZXFFwrc+26l11577SnnbrzxRlq2bMm0adO45557DIhK5ISyEkiZYj9O/JvTuhn3yyY2Zx0jvIYvb9yUgNmsepkiIlLZRSWlnn76aaZMmcL48ePp1q0bAIsWLeL555+nqKiIl19+2aFBinikJn3ggSX2u9rMexX2r4aPe0Ob26Hvc1Aj4rTfVjPAh3eGtmXoh0v5fvU+ejQN57q2dV0cvIiIE11oAiqypX0lR0wbiG4DES2cepcwZ+rcuTP33++8rVIi52XjD1CQA0HR9puzOMGcjdl8vtR+V+43b06gdpDuLCwiIqe6qKTU559/zscff8w11/zxQyw+Pp46derwj3/8Q0kpkZO8fKDrg9D6ZpjzPKROhbX/B5t+giuehE73n/YXq04Na/FQn6ZMmLONf09fT5vYUBqGB7o+fhGRS1WNE1B/dfz4cd59913q1KljdChS3Z0scN7hHqf8+8rOK+Lxb1MBuLd7Q3pe5rwi6iIi4tkuKil16NAhmjdvfsr55s2bc+jQoUsOSqTKCYqE6yZBhxHwy+P2X8p++xes+hwGvAqNe53yLQ/2bsqSHQdZsesQD325hu8e6IqPl7bGiogbUwKqQmhoKCbTH1uVbDYbx44dIyAggP/7v/8zMDKp9vaugn0rweID7e9yePNWq40xX6/lcGEpLWOCebx/M4f3ISIiVcdFJaUSEhKYOHEi7777bqXzEydOJD4+3iGBiVRJsZ3gvrmw5n+QPBZyt8D/hkCLwXDlyxBav+JSi9nEO0PbMOCdhaTtO8prv27m34PijItdROTPlIA6q7fffrtSUspsNlO7dm0SExMJDQ01MDKp9lacWCXV6gao4fgVTJMX7GTx9oP4e1t499a2+HrpbpMiInJmF5WUeu211xg4cCBz5syhS5cuACxdupSMjAx++eUXhwYoUuWYzdB+OMRdA/PGw4qPYNMM2JYE3R6GbqPtd/IDokP8ee2GeO7/3yo+XrSLbk3D6dXs9LWoRESc5nQJqMxUKFIC6kzuuusuo0MQOdWxbFj/vf24k+Nrm63NOMKbs7cA8Pw1cTSuXcPhfYiISNVyUUmpnj17snXrVt577z02b94MwPXXX8/999/PSy+9RI8ePRwapEiV5B9q37rXbjjM+ifsXgjzx8PaL+Cql+2FR00mrmwZxfAu9fl86R4e+zqVWaN7EBHsZ3T0IlJVKQHlEJ9++ik1atTgpptuqnT+m2++obCwkOHDhxsUmVRrqz4DaynU7QR12jm06fziMkZ/tYYyq42BraO5uUOsQ9sXEZGq6aKSUgAxMTGnFDRPTU1lypQpfPjhh5ccmEi1ERkHw2fY74Tz27/haAZ8fSc07GlPWkW04KmrW7Bi92E2ZebxyNdr+d/dibqtsohcuotKQLWxJ6GUgDqrcePGMXny5FPOR0REcP/99yspJa5XVgIrp9iPE//m8Oaf/XE9ew4WUqemP69c37rS9lUREZEzueiklIg4kMkELa+DplfBordh8Tuwaz5M6gaJf8Ov5xP859a2DP7PIhZvP8ik+TsY2auJ0VGLiCex2eDgDiWgXCQ9PZ2GDRuecr5+/fqkp6cbEJFUext/hPxsqBEFcdc6tOmfUjP5fvU+zCZ4Z2gbQvz1f4WIiJwfJaVE3IlPAPR+GtoOg9+ehs0zYdn7sO5rmvR9jrGDe/LP79fzVtJWOjcKo319FcsVkdMoK4bcrZC9EXPmOrpu+x2vTQ8qAeVCERERrFu3jgYNGlQ6n5qaSlhYmDFBSfV2ssB5x3sc+u87twjemrERgIf6NKVDg1oOa1tERKo+JaVE3FFoAxj6BWxPhl+ftP9y+dOD3BTTjvTL7mXi1po89OUafhndQ59GilRnNhsc3Qs5GyF7PWRvhOwNcHAbWMsAsAAV99dSAsplbr31Vh566CGCgoK4/PLLAZg/fz6jR49m6NChBkcn1c6+VbA3BSw+0P4uhzVbWm7lv9ssFBSX07FBKKO0iltERC7QBSWlrr/++rO+fuTIkUuJRUT+qkkf+Pti+6eb817FtH81j/EP4gJ78+yRm3jq+3W8d1s71W0QqQ6K8iBnkz35lHMi+ZS9EYpPs/oJwC8EIlpSXrs56w6YaNXvdrxjWisB5SIvvvgiu3fvpk+fPnh52adbVquVO++8k1deecXg6KTaWX6i3mvL66GG4+7i+8GCXezJNxHs58WEoW3xspgd1raIiFQPF5SUCgkJOefrd9555yUFJCJ/4eUDXR+E1jfDnOchdSpXl/9OD9+lTNh4PV8tq8mtXRobHaWIOEp5GRzaUXnlU84GOHKGOkRmLwi/zL4CKiIOIlvZb6AQXAdMJqylpaT/8gutopSQciUfHx+mTZvGSy+9xNq1a/H396d169bUr1/f6NCkusnPgfXf2Y8T73dYs2XlVv5vuf3/pWcHtaBOTX+HtS0iItXHBSWlPv30U2fFISLnEhQJ102CDnfDrMcJ2r+GZ7y/YPuv89jr/Tp1Oww0OkIRuRA2m/2XxUornzbAgS1QXnz67wmKsSefIk8knyLi7AkpLx/Xxi7nrWnTpjRt2tToMKQ6W/UZWEuhbkeo095hzS7beYhDBaUEetm4ulWkw9oVEZHqRTWlRDxNbEe493esa/5H/s/P0MS6D2beRvmmvljiroHGvaFmrNFRisiflRTCgU2VVz5lb4DCg6e/3jvQnnj688qniDgIUAFhT3HDDTfQqVMnnnjiiUrnX3vtNVJSUvjmm28MikyqlbISSJliP078u0ObnrluPwAJYTa8tW1PREQukpJSIp7IbMbcfjjF9frz5fsPc5P1V7x2zIEdc+yvh19mT0417g31u4FvDWPjFakurFY4vKvyyqfsDXBoJ2A79XqTGWo1rrzyKbIl1KwPZv2S58kWLFjA888/f8r5AQMG8Oabb7o+IKmeNv0E+VlQIxJaXOOwZkvKrMxanwVAu7DT/N8mIiJynpSUEvFgtWtHUufWd7nq0+kMMi/jupCt1D++AVPuVvsd+5Z/AGZvqNfZnqBq0gciW+uXXRFHKDz0R92nkyufcjZBaeHprw8IP7H17sTKp8iWULs5eKsOS1WUn5+Pj8+p2yq9vb3Jy8szICKplpZPtn/tcI9Dt/ku3p7L0eOl1K7hQ+PgM/yfJyIich6UlBLxcJdfVpvbBvbjpZ/r8M4h6F7Xi/e65BOyfyHsSLYXR9690P5IHmv/xbhxL2jcx/41KMrotyDi3sqK7Une7A2Vi4/nZ53+eosvRDSvvPIpsqVD73gl7q9169ZMmzaNZ599ttL5r776iri4OIOikmpl32rYu8L+4VT7uxza9IxU+9a9/q2iMJt2OrRtERGpXpSUEqkC7unekEa1A3noyzUs2ltGv19DmHT7c7Qf9LZ929CO32F7sj0xVZgLad/YH2D/xblxL/tKqnpdwdvP2DcjYhSbDY7urVzzKXujPSFlKz/999SsX3nlU0RLqNUILPrxWt0988wzXH/99ezYsYPevXsDkJyczNSpU/n2228Njk6qhRUf2r+2ut5+sxQHKSotZ/bGbAAGtY4ia72SUiIicvE0axapIno1i+CnUd25/78r2ZaTz9APl/Lita0Y2qkxhDWGTvfZC57uXWFPUu34HfavPbHyYz0s+Q94+dlrUJ3c6le7OZhMRr81EccrK4YDmyFrPWSl2f8NZKVB0ZHTX+8XYk84VbrzXQvwDXJp2OI5Bg8ezA8//MArr7zCt99+i7+/PwkJCfz+++/UqqWC9eJk+Qdg/Xf2405/c2jT87YcIL+4jJgQP9rUDeHX9Q5tXkREqhklpUSqkIbhgUwf2Y3Hvk7l1w1ZPPl9Gmn7jvLc4Jb4eJnt9SQadLc/+jwLBQdh51zYMde+1e9Ypv3rjmSY/TQERf9RML1RLwgMM/otily4goOQnWZPOp1MQuVuAWvZqdeavew3CohsWfnOd8F1lKCVCzZw4EAGDhwIQF5eHl9++SWPPfYYq1atorz8DKvvRBxh1WdQXgJ1OkDd9g5t+uRd9wYlxGA26/9FERG5NEpKiVQxNXy9eH9YO96ft503k7byxfJ0tmQd4/3b2xER9JeteYFh0PpG+8Nms68c2Z5sX0W1Z7E9SbX2C/sDE0Qn2FdQNe4NdTs5tGiqyCWzlsOhXZC17o+VT1nr4dj+01/vFwJR8fbEU1RriGplXx3o5evauKVKW7BgAVOmTOG7774jJiaG66+/nvfee8/osKQqKy+FlVPsx4mOXSVVWFJG8qYcAAbFRzu0bRERqZ6UlBKpgsxmE6N6NyUuJpjRX65l5Z7DDP7PIj64vT1t64We/ptMJvt2pIgW0HUUlBZB+pITW/3m2n/Jz1xrfyx8E3xqQIMef2z1q9VIK0nEdYrzIWfjicTTie132RvOfOe70Ib2pNOfk1AhdfV3VpwiKyuLzz77jClTppCXl8fNN99McXExP/zwg4qci/Nt+sn+oVKNSIgb4tCmkzflcLy0nPphAbSuE0JZ2WlWnIqIiFwAJaVEqrDezSP5cVQ37v/fKrbn5HPL5GW8NKQVN3eMPfc3e/v9sXUP4FjWiW1+J+pRFebC1ln2B0DNeieu7wMNLwf/mk57X1KN2GyQt//Eyqd1f2y/O7QTsJ16vZeffdtdVOs/HhFx4Bfs8tCleho8eDALFixg4MCBTJgwgf79+2OxWPjggw+MDk2qi+WT7V873O3wFc0VW/fiozEpqS8iIg6gpJRIFdeodg2m/6Mrj36dyuyN2fzzu3Wk7TvKM4Pi7HWmzldQFLS51f6wWu01ek7e1S99GRxJt9ewWPUZmMz2OhYnt/rFtNPdyOTcykrstZ4qio+fWAV1/PDpr68RaU86VWy/aw21Guvvmhhq1qxZPPTQQzzwwAM0bdrU6HCkutm/BjKWg9kb2o9waNPHikqZu+UAAIPiYxzatoiIVF+auYtUA0F+3nxwe3smzt3OW0lb+d+yPWzOyuP9Ye2pHXQR9XPMZnt9qegE6P4IlBTA7sUniqT/Drlb7Xf527sC5o2z1+5p2POPrX416zn+TYpnKTxUue5TVpq9ppm19NRrTRZ78fGoVpWTUDUiXB+3yDksWrSIKVOm0L59e1q0aMEdd9zB0KFDjQ5LqovlH9q/trwOgiId2nTSxmxKyqw0iahB8yjdeVRERBxDSSmRasJsNvFQn6bERQfzyLS1pOw+UWfqjva0ia15aY37BMJlV9ofYF81dXKr3855UHTEXuNi00/218Oa/LHVr0F38K1xaf2L+7Ja4fCuP+o+nUxC5e09/fW+wZULj0e1htot7NtJRTxA586d6dy5MxMmTGDatGl88sknjBkzBqvVSlJSErGxsQQF6Rd6cYL8A7D+W/uxgwucA8xI1dY9ERFxPCWlRKqZvnGR/DCqG/f/dyU7DhRw8+Sl9jpTHc6jztT5qlkP2g+3P6zl9u0EJ7f67U2Bg9vtjxUf2rcYxCZCkxP1q6IS7CuxxPOUFJ6++HhJ/umvr1nv1Lvf1ayv4uNSJQQGBnL33Xdz9913s2XLFqZMmcL48eN58skn6devHz/99JPRIUpVs/ozKC+BOu2hbgeHNn2ksISF23IBbd0TERHHUlJKpBpqXLsGP4zsxiPTUpmzKZt/fruODfuO8u9BcXhbHJwQMlvsk+O6HaDnP6HoKOxa8EeS6sge2LPI/kh+AQLCoFEvTA16UrPwoL2gdY1we6Fqi7djY5PzY7NB6XH7ireio3D8CBQdwVRwiKZZc7FM/96efDq0A2zWU7/f4mu/q+Of734X2VLF8KXaaNasGa+99hrjxo1jxowZfPLJJ0aHJFVNeSmkTLEfd3L8KqnfNmRRZrXRIjqYJhFa3SwiIo6jpJRINRXk582Hd7Tn3d+3MWHONj5fuodNWcd4f1g7wmtcRJ2p8+UXAi0G2x8AB3f8cUe/XQug8CCs/xav9d/SE2DL8398r3eA/ft9g+1fKx5/ee4bDH41T33dy6/6rsKxltsTSkVH7cml40f+OK5INJ3ltdPUevIC4gAy/3QysPaf6j7F2xNRYU1VfFwEsFgsDBkyhCFDhhgdilQ1m2bAsUwIjICWQxze/IxU+3/0g+KjHd62iIhUb/otQaQaM5tNPNz3MuKigxnzdSordh1i8H8WMfmO9sTXremaIMIa2x+d7rN/0rs3BXb8jnXHXIpzduJnKsZUUmC/trTQ/jiWefY2z8Tic+6klm/ImV/zqWFsUqv0eKWVSqckk872WnHepfdvsthXN/mFgF9NrL7B7DtSTEybflhiEuzJKAcX1hURkfOwfLL9a4e7wcuxHyzl5hezZId9695gbd0TEREHU1JKRLiyZRQ/jKzB/f9dyc7cAm78YCnjrmvNDe3rujYQizfU7wr1u1Le4wlm//ILV199Nd5mkz2pcnKlz5+Pi/58/OfXjvzxenGefVtZeQkUHLA/LobJfJqEVshpVmmdJalVUnBxK5WKjkJ58aX/GXsH2mP5U3Kp0vFfX6t4XtNe0P5PSbny0lJW//ILUV2vxuKtrZUiIobYvxYyloHZCzqMcHjzs9IysdogoW4I9cICHN6+iIhUb0pKiQgATSJq8MOobjzy1VqSN+fw6DeppO07ytMDWzi+ztSFsnhBQC3742JYrfZi28V/SWBVSmgdOXuyy1pqT2wVHbE/jGIynz5hdLZk0snEk28wePkYFrqIiDjBig/tX1teB0FRDm9+xjr76uTBCVolJSIijqeklIhUCPbz5qM7OzAheRvvJm/jsyW72ZSZx/vD2hHmzDpTzmY2n1ixFAwhF7H6y2aDsqLTJLSOnGbl1hlWb5UW/tGel//FrVTyCwHfoOpbF0tERCoryIW0b+3HTihwnnW0iJTdhwC4urXqSYmIiOMpKSUilZjNJsb0u4yWMcGMmbaW5RV1pjrQum6I0eEZw2QCb3/742I/hS4rsa/W8gl0eL0PERGpplZ9Zt/aHdPOfpdbB/s5LRObDTo2CCWmpr/D2xcRETF4T46IuKurWkbxw8huNAwPZP/RIm78YAnfr95rdFiey8vHvv1QCSkREXGE8lJImWI/TvybU1bRzly3H4BBKnAuIiJO4jZJqfHjx2MymXj44YfPeM1nn32GyWSq9PDz83NdkCLVTNPIIH4Y2Y3ezSMoLrMy5utUXpixkbJyq9GhiYiIVG+bZ8Kx/RBY215PysEyDhWyJv0IZhMMaO34WlUiIiLgJkmplJQUJk+eTHx8/DmvDQ4OJjMzs+KxZ88eF0QoUn2F+Hvz8Z0deLB3EwA+WbyLO6as4GC+A+4EJyIiIhdn+WT71/YjnLIK9+c0e4Hzzo3CiAjSh8AiIuIchiel8vPzGTZsGB999BGhoaHnvN5kMhEVFVXxiIyMdEGUItWb2Wzi0Sub8cHt7QjwsbB050GumbiY9fuOGh2aiIhI9ZOZCulLwewFHe52ShczUrV1T0REnM/wpNTIkSMZOHAgffv2Pa/r8/PzqV+/PrGxsVx77bVs2LDByRGKyEn9W0Xzw8huNAgLYN+R49z4wRJ+XLvP6LBERESql+Uf2r/GDYFgx98Vb1duARv25+FlNtG/lbbuiYiI8xh6972vvvqK1atXk5KScl7XN2vWjE8++YT4+HiOHj3KG2+8QdeuXdmwYQN1657+Nu/FxcUUF/+xzSgvLw+A0tJSSktLL/1N/MXJNp3RtjiGxujSNKzlx7d/S+TRb9KYvy2X0V+tJTX9MI9f2RQvi+Py3Bon96cx8gwapwujPydxewW5kPaN/Tjxb07pYuaJVVLdmoRTK9DHKX2IiIiAgUmpjIwMRo8eTVJS0nkXK+/SpQtdunSpeN61a1datGjB5MmTefHFF0/7PePGjWPs2LGnnJ89ezYBAQEXF/x5SEpKclrb4hgao0szJAx8Cs0k7TPzyZI9LNqwi+FNrdTwdmw/Gif3pzHyDBqn81NYWGh0CCJnt/pzKC+GmLZQt6NTuphx4q57gxO0dU9ERJzLsKTUqlWryMnJoV27dhXnysvLWbBgARMnTqS4uBiLxXLWNry9vWnbti3bt28/4zVPPfUUY8aMqXiel5dHbGwsV155JcHBwZf+Rv6itLSUpKQk+vXrh7e3g387F4fQGDnOIGDW+iyenL6BrUdh0vYA3r+tLS2igy65bY2T+9MYeQaN04U5uaJaxC2Vl0HKFPtxp7+ByeTwLrZkHWNrdj4+FjNXtlTtVhERcS7DklJ9+vQhLS2t0rkRI0bQvHlznnjiiXMmpMCexEpLS+Pqq68+4zW+vr74+p56RxJvb2+nTs6d3b5cOo2RY1zTNpZm0TW5/38r2XOwkJs/Ws5rNyZwjYM+XdU4uT+NkWfQOJ0f/RmJW9s8E/L2QWBtaHW9U7qYeWKV1OWX1SbYT/8eRETEuQxLSgUFBdGqVatK5wIDAwkLC6s4f+edd1KnTh3GjRsHwAsvvEDnzp1p0qQJR44c4fXXX2fPnj3ce++9Lo9fRP7QLCqIn0Z258Gv1rBg6wEe+nIN6/cd5Z9XNXNonSkREZFqbflk+9f2d4HXqR+6XiqbzcbMdZkADE5wfAF1ERGRv3Lr3xbT09PJzMyseH748GHuu+8+WrRowdVXX01eXh5LliwhLi7OwChFBCAkwJtP7+rIA1c0BuDDBTsZ8VkKRwpLDI5MRESkCshcB+lLwOwFHe52Shcb9uexK7cAP28zfVto656IiDifoXff+6t58+ad9fnbb7/N22+/7bqAROSCWMwmnujfnFYxITz2TSoLt+UyeOIiPryjAy2iHV/DTUREpNpYcWKVVItrINg5BchPFjjv0zySQF+3+jVBRESqKLdeKSUinmlgfDTf/6MrsbX8yTh0nOvfX1JRo0JEREQuUMFBSPvWfpz4d6d0YbPZmJlq36EwKF5b90RExDWUlBIRp2gRHcyMUd3p0TSc46XljJq6hnGzNlFutRkdmoiIiGdZ/TmUFUF0G4jt5JQu1mQcYd+R4wT6WOjVPMIpfYiIiPyVklIi4jQ1A3z4bEQn/tazEQCT5+/krk9XqM6UiIjI+Sovg5Qp9uPEv4HJ5JRuTq6S6hcXiZ/3ue+CLSIi4ghKSomIU1nMJp4a0IJ3b22Ln7eZhdtyuWbiYjZn5RkdmoiIiPvb8jPk7YWAcGh5vVO6sFpt/Jxm32Y/KN459apEREROR0kpEXGJaxJi+P6BbtQN9Sf9UCHXv7+En9dlnvsbRUREqrPlJwqct78LvP2c0kXK7kNk5xUT7OdFj8vCndKHiIjI6SgpJSIuExdjrzPVvUk4hSXljJy6mld/3aw6UyIiIqeTlQZ7FoPJAh3vcVo3J++6d1XLKHy9tHVPRERcR0kpEXGp0EAfPhvRkfsvt9eZmjRvB3d/lsLRwlKDIxMREXEzJ1dJxV0Dwc7ZVldWbmVWWhYAgxO0dU9ERFxLSSkRcTkvi5l/Xd2Cd4a2wc/bzPytB7jmvUVsyTpmdGgiIiLuofAQpH1jP078u9O6WbbzEAcLSqgV6EPXxmFO60dEROR0lJQSEcNc26YO3z3QlTo1/dlzsJDr3l/MrDTVmRIREWH151BWBNEJEJvotG5mpNq37g1oFYWXRb8aiIiIa+knj4gYqmVMCDMe7E7XxmEUlpTzwBereeO3LaozJSIi1Vd5Gaz42H7c6W9gMjmlm5IyK79usG/d0133RETECEpKiYjhagX68N+7O3Fv94YATJy7nb99sYbCMoMDExERMcKWXyBvLwSEQasbnNbNou0HOHq8lNpBvnRqWMtp/YiIiJyJklIi4ha8LGb+PSiOCbe0wdfLzPytubyaamHOphyjQxMREXGtkwXO298F3n5O62Zmqn3L/MDW0VjMzlmNJSIicjZKSomIWxnS1l5nqm6oP0dKTDwwdS33fp5CxqFCo0MTERFxvqz1sGcRmCzQ4R6ndVNUWs7sjdkADE6Idlo/IiIiZ6OklIi4nVZ1QvhlVFf61rHibTExZ1MO/d6ez6R5OygpsxodnoiIiPOsOLFKqsVgCKnjtG7mbTlAfnEZdWr60zY21Gn9iIiInI2SUiLilvx9LAyuZ+Wnf3QhsWEtikqtvPrrZga+u5DlOw8aHZ6IiMu99957NGjQAD8/PxITE1mxYsUZr92wYQM33HADDRo0wGQyMWHChFOuef755zGZTJUezZs3d+I7kHMqPATrvrEfJ/7dqV3NXGe/697A+GjM2ronIiIGUVJKRNxak4gafHV/Z968KYGwQB+25eRzy4fLeOybVA7mFxsdnoiIS0ybNo0xY8bw3HPPsXr1ahISErjqqqvIyTl93b3CwkIaNWrE+PHjiYqKOmO7LVu2JDMzs+KxaNEiZ70FOR+r/wtlxyGqNdTr7LRuCkvKSD5Rs3Gw7ronIiIGUlJKRNyeyWTihvZ1SX60J7cl1gPg21V76f3mfL5ckY7VajM4QhER53rrrbe47777GDFiBHFxcXzwwQcEBATwySefnPb6jh078vrrrzN06FB8fX3P2K6XlxdRUVEVj/DwcGe9BTmX8jJI+dh+nPh3MDlv9VLyphyOl5ZTPyyAVnWCndaPiIjIuSgpJSIeo2aAD69c15rv/9GVFtHBHD1eylPfp3HjB0vYlJlndHgiIk5RUlLCqlWr6Nu3b8U5s9lM3759Wbp06SW1vW3bNmJiYmjUqBHDhg0jPT39UsOVi7V1FhzNgIAwaHWjU7uakWrfujcoPhqTE5NfIiIi5+JldAAiIheqXb1QZozqxudL9/DW7C2sTj/CoP8sYkTXBjzc7zJq+Oq/NhGpOnJzcykvLycyMrLS+cjISDZv3nzR7SYmJvLZZ5/RrFkzMjMzGTt2LD169GD9+vUEBQWdcn1xcTHFxX9sm87Ls38YUFpaSmlp6UXHcSYn23RG2+7IsmwSZqC8zR1YsYCT3vexolLmbT0AwIC4iEv6861uY+SpNE7uT2PkGTROF+Z8/5z0m5uIeCQvi5l7ujfk6tZRvDhzI7+kZfHxol3MXJfJc4Pj6N8qSp/+ioicxYABAyqO4+PjSUxMpH79+nz99dfcc889p1w/btw4xo4de8r52bNnExAQ4LQ4k5KSnNa2uwg6nkHvPYuxYmbO0foU/fKL0/paccBESZmFSH8b21ctZIcDflRWhzGqCjRO7k9j5Bk0TuensLDwvK5TUkpEPFp0iD/vD2vP3C05PPfjBtIPFfLAF6vp1aw2L1zbithazvtFSUTEFcLDw7FYLGRnZ1c6n52dfdYi5heqZs2aXHbZZWzfvv20rz/11FOMGTOm4nleXh6xsbFceeWVBAc7vi5RaWkpSUlJ9OvXD29vb4e3704sPz9iP2g+iN5D7nBqX9//bzWQyy1dmjCwV+NLaqs6jZEn0zi5P42RZ9A4XZiTK6rPRUkpEakSejWLoMsjYbw3dzsfzN/B3C0H6PvWfB7q05T7ejTCx0sl9ETEM/n4+NC+fXuSk5MZMmQIAFarleTkZEaNGuWwfvLz89mxYwd33HH6pIivr+9pi6Z7e3s7dXLu7PYNV3gI1n8LgLnLA5id+F6PFJawePtBAK5tW9dhf65VfoyqCI2T+9MYeQaN0/k53z8j/ZYmIlWGn7eFR69sxqzRl9OlURjFZVZe/20LA95ZwNIdB40OT0Tkoo0ZM4aPPvqIzz//nE2bNvHAAw9QUFDAiBEjALjzzjt56qmnKq4vKSlh7dq1rF27lpKSEvbt28fatWsrrYJ67LHHmD9/Prt372bJkiVcd911WCwWbr31Vpe/v2ptzf+g7DhEtoZ6XZza1a/rsyiz2oiLDqZx7RpO7UtEROR8aKWUiFQ5TSJqMPW+RH5cu5+Xft7IjgMF3PrRMq5vW4d/DWxBeI0z3x5dRMQd3XLLLRw4cIBnn32WrKws2rRpw6+//lpR/Dw9PR2z+Y/PGvfv30/btm0rnr/xxhu88cYb9OzZk3nz5gGwd+9ebr31Vg4ePEjt2rXp3r07y5Yto3bt2i59b9WatRxWfGw/TvwbOLkW4sx1mQAMSoh2aj8iIiLnS0kpEamSTCYTQ9rWoVezCF6fvZkvlqfz/Zp9zNmUzRMDmnNrx3qYzSqELiKeY9SoUWfcrncy0XRSgwYNsNlsZ23vq6++clRocrG2zIKj6eBfC1rf6NSuDhwrZsmOXAAGtY5xal8iIiLnS9v3RKRKCwnw5qUhrZn+j260qhNMXlEZT09fz/WTlrB+31GjwxMRkeps+Qf2r+2Hg7e/U7v6dX0mVhskxNakXphuAiIiIu5BSSkRqRbaxNbkx5HdeX5wHDV8vVibcYRrJi7ihRkbyS8uMzo8ERGpbrI3wu6FYLJAh3uc3t2MVPvWvcHx2ronIiLuQ0kpEak2LGYTd3VrSPKjPRkUH43VBp8s3kWfN+fx87rMc251ERERcZgVk+1fmw+EmrFO7SrraBEpew4BMFBJKRERcSNKSolItRMZ7MfE29rx37s7UT8sgOy8YkZOXc1dn6aw52CB0eGJiEhVd/wwpE6zHyf+3end/ZyWic0GHRuEEh3i3G2CIiIiF0JJKRGpti6/rDa/PXw5o/s0xcdiZv7WA1z59gLeTd5GcVm50eGJiEhVtfp/UHYcIltB/a5O725G6n4ABieowLmIiLgXJaVEpFrz87bwSL/L+PXhHnRvEk5xmZW3krYyYMJCFm/PNTo8ERGpaqzlkPKR/Tjxb2By7p1gMw4VsjbjCGYTDGilrXsiIuJelJQSEQEa1a7B/+7pxLu3tqV2kC87cwsY9vFyRn+1hpxjRUaHJyIiVcXWX+FIOviHQuubnN7dzHX2AuedG4VRO8jX6f2JiIhcCCWlREROMJlMXJMQQ/KjPRnepT5mE/y4dj993pzPf5fuptyqQugiInKJlp8ocN5uOHg7v77TzHXauiciIu5LSSkRkb8I9vNm7LWt+HFkd+LrhnCsqIxnf9zAde8vJm3vUaPDExERT5WzCXbNB5MZOt7r9O52Hshnw/48vMwm+reMcnp/IiIiF0pJKRGRM2hdN4Tp/+jGC9e2JMjXi3V7j3Lte4t4/qcN5BWVGh2eiIh4mpOrpJoPhJqxTu/u5Na97k3DCQ30cXp/IiIiF0pJKRGRs7CYTdzZpQHJj/Xk2jYxWG3w2ZLd9HlzPjNS92OzaUufiIich+OHYd00+3Hi313S5cmte4PitXVPRETck5JSIiLnISLIj3eGtuX/7kmkUXggB44V8+CXa7jzkxXsyi0wOjwREXF3KR9DaSFEtIT63Zze3ZasY2zNzsfHYubKlpFO709ERORiKCklInIBujcNZ9bDPRjT7zJ8vMws3JbLVRMWMGHOVopKy40OT0RE3FFBLix6x37c/WEwmZze5clVUj2b1SbYz9vp/YmIiFwMJaVERC6Qr5eFh/o0ZfbDl3P5ZbUpKbMyYc42+k9YwMJtB4wOT0RE3M3816DkGEQnQKsbnd6dzWZjRurJrXvRTu9PRETkYikpJSJykRqEB/L5iI68d1s7IoN92X2wkDumrODBL9eQk1dkdHgiIuIODu6AlVPsx/1eBLPzp98b9uex+2Ahft5m+rbQ1j0REXFfSkqJiFwCk8nEwPho5ozpyYhuDTCbYEbqfvq8OZ/PFu+i3KpC6CIi1VryWLCWQZN+0KinS7o8uUqqT/NIAn29XNKniIjIxVBSSkTEAYL8vHlucEt+GtWdhNiaHCsu4/kZGxny3mLW7T1idHgiImKEjBWw8UcwmaHfCy7p0mazMXNdJgCDE7R1T0RE3JuSUiIiDtSqTgjfP9CVl4a0ItjPi7R9R7n2vcU888N6jh4vNTo8ERFxFZsNZj9jP25zG0TGuaTbNRlH2HfkOIE+Fq5oFuGSPkVERC6WklIiIg5mMZu4vXN9kh+9guva1sFmg/8t20OfN+czdXk6peVWo0MUERFn2zwTMpaBlz/0etpl3Z7cutcvLhI/b4vL+hUREbkYSkqJiDhJ7SBf3r6lDVPvS6Rx7UBy84v51/Q0er85j69XZlCm5JSISNVUXgpznrcfdxkJwTGu6dZq4+eKrXuu6VNERORSKCklIuJkXRuHM2v05Tw3OI7wGr5kHDrOP79dR9+35jN9zV4VQxcRqWpWfQYHt0NAOHQb7bJuU3YfIudYMcF+XvRoWttl/YqIiFwsJaVERFzAx8vMiG4NWfjPXvzr6ubUCvRh98FCHpmWylUTFjBz3X6sSk6JiHi+4mMwb7z9+IonwS/YZV3PXGffute/VRQ+Xprmi4iI+9NPKxERF/L3sXD/5Y1Z+M9ePH5VM0L8vdmek8+oqWu4+t2F/Lo+C5tNySkREY+1+B0ozIVajaH9XS7rtqzcyqy0LAAGxWvrnoiIeAYlpUREDBDo68XIXk1Y9EQvHul7GUG+XmzOOsbf/28Vg/6ziORN2UpOiYh4mrxMWDLRftz3ebB4u6zrpTsPcrCghFqBPnRtHOayfkVERC6FklIiIgYK8vNmdN+mLHqiNw/2bkKgj4UN+/O45/OVDHl/CfO3HlBySkTEU8x9GcqOQ2witBjs0q5nptoLnA9oFYWXRVN8ERHxDPqJJSLiBkICvHn0ymYsfKI3f+/ZGH9vC6kZRxj+yQpu+mApS7bnGh2iiIicTfZGWPuF/bjfi2AyuazrkjIrs9bbk1LauiciIp5ESSkRETdSK9CHJwc0Z8E/e3FP94b4eplZuecwt328nKEfLiVl9yGjQxQRkdOZ8xzYrNDiGqiX6NKuF20/QF5RGRFBvnRqWMulfYuIiFwKt0lKjR8/HpPJxMMPP3zW67755huaN2+On58frVu35pdffnFNgCIiLlQ7yJdnBsWx4J+9GN6lPj4WM8t2HuKmD5Zyx5TlrEk/bHSIIiJy0s75sG02mL3staRcbMaJrXtXt47GYnbdCi0REZFL5RZJqZSUFCZPnkx8fPxZr1uyZAm33nor99xzD2vWrGHIkCEMGTKE9evXuyhSERHXigz2Y+y1rZj7+BXcllgPL7OJhdtyue79Jdz9WQppe48aHaKISPVmtULSM/bjDndDWGOXdl9UWk7SxmwABido656IiHgWw5NS+fn5DBs2jI8++ojQ0NCzXvvOO+/Qv39/Hn/8cVq0aMGLL75Iu3btmDhxoouiFRExRp2a/rxyXWvmPnYFN7Wvi8Vs4vfNOQyeuIj7/7uSTZl5RocoIlI9rf8OMlPBJwh6PuHy7udtySG/uIw6Nf1pV6+my/sXERG5FIYnpUaOHMnAgQPp27fvOa9dunTpKdddddVVLF261FnhiYi4ldhaAbx+UwJzxvTkurZ1MJlg9sZsBryzkJFfrGZb9jGjQxQRqT5KiyD5Bftx94chMNzlIcxYd7LAeTQmFxZXFxERcQQvIzv/6quvWL16NSkpKed1fVZWFpGRkZXORUZGkpWVdcbvKS4upri4uOJ5Xp59NUFpaSmlpaUXEfXZnWzTGW2LY2iMPIPG6ezqhvjw2vUtub97fSbO3cnP67P4OS2TX9ZnMrh1NKN6NaJheKBTY9AYeQaN04XRn5NckJSP4Gg6BMVA53+4vPvCkjJ+35QD6K57IiLimQxLSmVkZDB69GiSkpLw8/NzWj/jxo1j7Nixp5yfPXs2AQEBTus3KSnJaW2LY2iMPIPG6dyuDIJW8TBrr5l1h8z8tC6TGev207G2javqWgl33n+xgMbIU2iczk9hYaHRIYinKDwEC163H/d+GnycN688kzmbcjheWk79sABa1Ql2ef8iIiKXyrCk1KpVq8jJyaFdu3YV58rLy1mwYAETJ06kuLgYi8VS6XuioqLIzs6udC47O5uoqKgz9vPUU08xZsyYiud5eXnExsZy5ZVXEhzs+B/epaWlJCUl0a9fP7y9vR3evlw6jZFn0DhduHuBDfvzeOf37czdksuKAyZWH7RwQ7sYHujZiDo1/R3an8bIM2icLszJFdUi57TwTSg6ChEtIeFWQ0KYmbofgMHxMdq6JyIiHsmwpFSfPn1IS0urdG7EiBE0b96cJ5544pSEFECXLl1ITk7m4YcfrjiXlJREly5dztiPr68vvr6+p5z39vZ26uTc2e3LpdMYeQaN04VpUz+MT0eEsTbjCG8lbWXB1gNMW7mP79fsZ2jHeozs1YSoEMcundIYeQaN0/nRn5Gcl8O7YcWH9uN+L4D51Hmrs+UVlTJvywEABiVEu7x/ERERRzAsKRUUFESrVq0qnQsMDCQsLKzi/J133kmdOnUYN24cAKNHj6Znz568+eabDBw4kK+++oqVK1fy4Ycfujx+ERF31ia2Jv+9uxMrdx/iraStLNlxkP8t28O0lRkMS6zHA1c0JiLIyfv6RESqqt9fgvISaNgTmvQxJISkDdmUlFtpGlGDZpFBhsQgIiJyqQy/+97ZpKenk5mZWfG8a9euTJ06lQ8//JCEhAS+/fZbfvjhh1OSWyIiYtehQS2m3teZL+/rTMcGoZSUWfl08W4uf20u437ZxMH84nM3IiIif9i3GtK+sR9f+SIYtG1uxjr71r1B2ronIiIezNC77/3VvHnzzvoc4KabbuKmm25yTUAiIlVEl8ZhfN2oC4u25/Lm7K2szTjC5AU7+d+yPYzo1oD7ejSiZoCP0WGKiLg3mw2SnrUfx98C0QmGhHG4oIRF23IBbd0TERHP5tYrpURExHFMJhM9mtZm+j+68sldHWhVJ5jCknLem7uDHq/O5e2kreQVlRodpoiI+9o2G3YvBIsv9P63YWH8tiGLMquNuOhgGteuYVgcIiIil0pJKRGRasZkMtG7eSQzRnVn8h3taR4VxLHiMt5J3kb38b8z8fdt5BeXGR2miIh7KS/7Y5VU4t+gZj3DQqnYuqdVUiIi4uGUlBIRqaZMJhNXtYzil4d68N5t7WgSUYO8ojLemL2VHq/+zgfzd1BYouSUiAgAa7+AA5vBPxR6PGpYGAeOFbN0x0EABsfHGBaHiIiIIygpJSJSzZnNJgbGR/Pbw5fzztA2NAwP5HBhKeNnbeby1+YyZdEuikrLjQ5TRMQ4JQUw9xX78eWPg39Nw0KZtT4Tqw0SYmsSWyvAsDhEREQcQUkpEREBwGI2cW2bOiQ9cjmv3xhPbC1/cvNLeHHmRnq+Ppf/Lt1NcZmSUyJSDS19D/KzoGZ96HivoaHMTLXfmXpwvLbuiYiI51NSSkREKvGymLmpQyy/P3oF465vTUyIH9l5xTz74wZ6vT6PqcvTKS23Gh2miIhr5OfA4nfsx32eBS9fw0LJPHqclD2HABiopJSIiFQBSkqJiMhpeVvM3NqpHnMfv4IXr21JZLAv+48W8a/pafR+cx7frt5Huc3oKEVEnGzeeCjJh5i20PJ6Q0P5eV0mNht0alCL6BB/Q2MRERFxBC+jAxAREffm62Xhji4NuKlDLFOXp/P+vB1kHDrOU9M3EO5nIa92Brd0rI+/j8XoUEVEHCt3G6z6zH7c70UwG/t57sx19q17uuueiIhUFVopJSIi58XP28Ld3Ruy4J9X8NSA5oQGeJNbZOL5GZvoMj6Z13/bTHZekdFhiog4zpznwVYOl/WHhj0MDSXjUCFrM45gNsGAVkpKiYhI1aCklIiIXJAAHy/+1rMxc8f04PoG5dQN9edIYSnvzd1B91d/Z8zXa9mw/6jRYYqIXJo9S2HzTDCZoe9Yo6OpWCXVpXEYtYOMq2slIiLiSEpKiYjIRQn09aJntI05D3fng9vb0aF+KKXlNr5fvY+B7y7ito+WkbwpG6tVhadExMPYbJD0jP247R0Q0dzYeIAZqfsBGBQfY3AkIiIijqOaUiIickksZhP9W0XTv1U0azOOMGXRLn5Jy2TJjoMs2XGQRuGB3N29ITe0q6u6UyLiGTb+CHtTwDsAev3L6GjYeSCfjZl5eJlN9G8ZZXQ4IiIiDqOVUiIi4jBtYmvyn1vbsuCfvbj/8kYE+XqxM7eAf/+wni7jk3njty3kqO6UiLizshJ7LSmArg9CkPFJoJNb97o3DSc00MfgaERERBxHSSkREXG4OjX9+dfVLVj6rz48OyiO2Fr2ulMT526nm+pOiYg7W/UpHN4FgRH2pJQbOLl1b7C27omISBWj7XsiIuI0NXy9uLt7Q4Z3bUDSxiw+XriLlXsO8/3qfXy/eh9dG4dxb4+GXHFZBGazyehwRaS6KzoK88bbj694EnyDjI0H2JJ1jG05+fhYzPRrGWl0OCIiIg6lpJSIiDjdn+tOrUk/zJRFu5i1PuuPulO1A7mne0Oub6u6UyJioEUT4PghCGsK7YYbHQ3wxyqpns1qE+znbXA0IiIijqXteyIi4lJt64Uy8bZ2zH/8Cu7r0dBed+pAAU9PX09X1Z0SEaMc3QvL3rcf9xsLFuM/u7XZbMxcd2LrXoK27omISNWjpJSIiBiibmgATw+Mq6g7VTfUn8N/qjv16NepbNyfZ3SYIlJdzH0FyoqgXldodrXR0QCwfl8euw8W4udtpk/zCKPDERERcTjjPwISEZFq7c91p2ZvyOLjRbtYtecw363ey3er99KtSRj3dm9Ez8tqq+6UiDhH1npYO9V+fOWLYHKP/2tOrpLq0yKSQF9N20VEpOrRTzcREXELFrOJAa2jGdC6ct2pxdsPsni76k6JiBMlPQvYoOV1ULeD0dEAJ7fuZQIwOD7a4GhEREScQ9v3RETE7Zyr7tSbs7eQc0x1p0TEAXb8DjuSwewNfZ41OpoKq9OPsO/IcWr4enFFM23dExGRqklJKRERcVsn604teao3z/yp7tR/ft9O9/FzeeybVDZlqu6UiFwkq/XEKimg471Qq5Gx8fzJya17/eIi8fPW6lAREamatH1PRETcXpCfN/d0b8jwLvVJ2phdUXfq21V7+XaV6k6JyEVK+xqy0sA3GC5/3OhoKpRbbfx8YuveIG3dExGRKkxJKRER8RheFnNF3anVJ+tOpWVW1J1qXDuQe7o34vp2dbSyQETOrvQ4JL9oP+4xBgLDjI3nT1J2HyLnWDHBfl70aFrb6HBEREScRkkpERHxSO3qhdLutlAyDhXy+ZLdTEvJYMeBAv41PY3Xf9vM7Z3rc0eX+kQE+Rkdqoi4o+WTIW8vBNeFxL8bHU0lM1LtW/f6t4rCx0vVNkREpOrSTzkREfFosbUC+Pcg1Z0SkQtQeAgWvmU/7v1v8PY3Np4/KSu38uv6LAAGJ8QYHI2IiIhzaaWUiIhUCX+uOzV7YzYfL9zJ6vQjFXWnujcJ554eDenZVHWnRKq9Ba9D8VGIbA3xNxsdTSVLdx7kYEEJYYE+dGnkPlsKRUREnEFJKRERqVK8LGaubh3N1X+pO7Voey6Ltueq7pRIdXdoJ6z4yH585Qtgdq//B/68dc/Lok0NIiJStSkpJSIiVdZf60599ae6U2/M3sLtifW4XXWnRKqX5BfBWgqNe9sfbqSkTFv3RESketHHLyIiUuWdrDu19Kne/HtgC+rU9OdQQQnvnqg79fg3qWzOUt0pkSpv7yrY8D1ggn4vGB3NKRZuO0BeURkRQb50bFDL6HBEREScTiulRESk2gjy8+beHo24q2sDftuQzZRF9rpT36zayzcn6k6N6NaAnpfV1rYZkarGZoOkZ+zHCbdCVGtj4zmNmesyARgYH41Fte9ERKQa0IxbRESqHS+LmYHx0Xz/j25890BXBraOxmyCRdtzuefzlXR/dS5vzt5CxqFCo0MVqfDee+/RoEED/Pz8SExMZMWKFWe8dsOGDdxwww00aNAAk8nEhAkTLrlNj7dlFuxZDF5+0Ptpo6M5RVFpObM32LfuDYrX1j0REakelJQSEZFqrX39UN4b1o75j/fi3u4NCQ3wJiuviP/8vp0er81l2MfL+Cl1P0Wl5UaHKtXYtGnTGDNmDM899xyrV68mISGBq666ipycnNNeX1hYSKNGjRg/fjxRUVEOadOjlZfBnOfsx50fgJC6xsZzGvO25FBQUk6dmv60q1fT6HBERERcQkkpERER/qg7texffZh4W1t6NA0HYPH2gzz05RoSX0nm+Z82qPaUGOKtt97ivvvuY8SIEcTFxfHBBx8QEBDAJ598ctrrO3bsyOuvv87QoUPx9fV1SJsebc1/IXcr+NeC7o8YHc1pzTixdW9QfDQmk7buiYhI9aCklIiIyJ/4elkYFB/D/+5JZOE/e/FQn6ZEh/hx9Hgpny3ZTf8JC7n2vcVMXZ7OsaJSo8OVaqCkpIRVq1bRt2/finNms5m+ffuydOlSt2nTbRXnw9xx9uOeT4BfiLHxnEZBcRnJm7IBbd0TEZHqRYXORUREziC2VgBj+l3G6D5NWbjtANNSMkjamE1qxhFSM47w4syNDIqPZminWNrVC9XqBnGK3NxcysvLiYyMrHQ+MjKSzZs3u6zN4uJiiouLK57n5dlXDZaWllJa6vgE7ck2L7Vt86IJWApysIU2pKzNHeCEWC/V7PWZFJVaqV8rgGYR/k7583QGR42ROJfGyf1pjDyDxunCnO+fk5JSIiIi52Axm7iiWQRXNIsgN7+Y71fvZVpKBjsOFFTcua9x7UCGdqzHde3qEF7j9NulRDzZuHHjGDt27CnnZ8+eTUBAgNP6TUpKuujv9S09Qt+N7wKwMmQg+3+b46iwHOqTzWbATDP/fGbNmmV0OBfsUsZIXEfj5P40Rp5B43R+CgvP74ZBSkqJiIhcgPAavtx/eWPu69GIVXsO81VKBj+vy2THgQJe/mUTr/22mb4tIrmlYyw9mtbWbd3lkoWHh2OxWMjOzq50Pjs7+4xFzJ3R5lNPPcWYMWMqnufl5REbG8uVV15JcHDwRcVxNqWlpSQlJdGvXz+8vb0vqg3zL2OwWIuxxrSnzW3P0cYNVzMeKyrlsRXzABujr+vGZZFBRod03hwxRuJ8Gif3pzHyDBqnC3NyRfW5KCklIiJyEUwmEx0a1KJDg1o8NziOGamZTEtJJ3XvUWatz2LW+ixiQvy4qUMsN3WoS91Q560kkarNx8eH9u3bk5yczJAhQwCwWq0kJyczatQol7Xp6+t72qLp3t7eTp2cX3T7B7bA2v8DwHzVS5h9fBwcmWP8vi6b0nIbTSNq0LJuLaPDuSjO/jsgjqFxcn8aI8+gcTo/5/tnpKSUiIjIJQry8+a2xHrclliPjfvz+HplBtPX7GP/0SLeSd7Gu79vo3uTcIZ2rEffuAh8vSxGhyweZsyYMQwfPpwOHTrQqVMnJkyYQEFBASNGjADgzjvvpE6dOowbZy/oXVJSwsaNGyuO9+3bx9q1a6lRowZNmjQ5rzY9XtJzYLNCs4FQv6vR0ZzRzHX7ARicoALnIiJS/SgpJSIi4kBxMcE8f01LnhzQnN82ZDEtJYMlOw6ycFsuC7flUivQh+va1uGWjrEetU1HjHXLLbdw4MABnn32WbKysmjTpg2//vprRaHy9PR0zOY/bqq8f/9+2rZtW/H8jTfe4I033qBnz57MmzfvvNr0aLsXwdZZYLJA3+eNjuaMDheUsGhbLgCD4qMNjkZERMT1lJQSERFxAj9vC9e2qcO1beqQfrCQr1dm8M2qDLLzipmyaBdTFu2iXb2a3NIxlkHxMQT66keynN2oUaPOuLXuZKLppAYNGmCz2S6pTY9ltcLsZ+zH7YdD7cuMjecsft2QRZnVRlx0MI1q1zA6HBEREZfTDFhERMTJ6oUF8NhVzXi4b1Pmbz3AtJQMkjfnsDr9CKvTj/DCjI0MTojh5o6xtI2tickNizGLeIyN02H/avAOhCueMjqas9LWPRERqe6UlBIREXERL4uZPi0i6dMikpxjRXy3ah9fr8xgV24BX6Vk8FVKBpdF1uCWjvW4rm0dagW6Z2FmEbdVVgxzxtqPu42GGhHGxnMWB44Vs3THQUBb90REpPoyn/sSERERcbSIID8euKIxvz/ak2n3d+b6tnXw9TKzNTufF2dupPMryYycupqF2w5gtZ57G5aIAClT4MgeqBEJXd17W+Ks9ZlYbdAmtiaxtXR3ThERqZ60UkpERMRAJpOJxEZhJDYK47lrWvJT6n6mpaSzfl8eP6/L5Od1mdQN9efmDrHc2L4uMTX9jQ5ZxD0dPwILXrMf9/oX+AQaGs65zEi1b93TKikREanOlJQSERFxEyH+3tzRuT53dK7P+n1H+XplBtPX7GPv4eO8lbSVCXO2cvlltRnaMZbezSPx8dKCZ5EKi96C44ehdnNoc7vR0ZxV5tHjpOw+jMkEg+JVT0pERKovJaVERETcUKs6IbSqE8K/rm7BrPWZfLUig+W7DjFvywHmbTlAWKAPN7Svy80dYmkSobt2STV3JB2WfWA/7jsWLO49xf15XSYAHevXIirEz+BoREREjOPeP7FFRESqOT9vC9e1rct1beuyK7eAr1dm8O2qvRw4VsyHC3by4YKddGwQys0dYhkYH02Aj360SzX0+8tQXgwNesBlVxkdzTnNOJGUGpSgrXsiIlK9aeYqIiLiIRqGB/JE/+aM6XcZ87YcYFpKOr9vziFl92FSdh9m7IyNXNMmhqEdY2ldJwSTyWR0yCLOl5kK66bZj/u9AG7+9z7jUCGpGUcwm2BAKyWlRESkelNSSkRExMN4W8z0i4ukX1wkWUeL+G71XqalZJB+qJCpy9OZujyd5lFBDO0Yy8BWkUaHK+I8NhvMfgawQasboU47oyM6pxnr7AXOuzQOo3aQr8HRiIiIGEtJKREREQ8WFeLHyF5NeKBnY5btOsi0lAxmrc9ic9Yxnp+xkVdmbSYu2Iy5fjb9Wkbj520xOmQRx9meDLvmg8UH+jxjdDTnZWaqfeveYBU4FxERwdDb9kyaNIn4+HiCg4MJDg6mS5cuzJo164zXf/bZZ5hMpkoPPz8VhxQRETGbTXRtHM47Q9uy4l99GHtNS1pEB1NSZmXtITMPfpVKh5fmMGbaWuZuzqG03Gp0yCKXxloOSc/ajzvdD6ENDA3nfOw4kM/GzDy8zCb6t4oyOhwRERHDGbpSqm7duowfP56mTZtis9n4/PPPufbaa1mzZg0tW7Y87fcEBwezZcuWiueqlyEiIlJZzQAfhndtwJ1d6pOafoh3f1zCpoIAMo8W8f2afXy/Zh81A7wZ0CqawQnRJDYMw2LWz1PxMKlfQs4G8AuBHo8aHc15OblKqkfTcGoG+BgcjYiIiPEMTUoNHjy40vOXX36ZSZMmsWzZsjMmpUwmE1FR+mRJRETkXEwmEy1jgrm2vpVJ/XuQlpnPjNT9/JyWSW5+CV+uSOfLFelEBPkyMD6awQkxtI2tqQ98xP2VFNrvuAfQ4zEIqGVsPOfBZrNV1JMapK17IiIigBvVlCovL+ebb76hoKCALl26nPG6/Px86tevj9VqpV27drzyyitnTGCJiIiIndlsokODWnRoUItnBsWxfNchflq7n1nrM8k5Vsyni3fz6eLd1A31Z3BCDIPjY2gRHaQElbinZe/Dsf0QUs++dc/N5ReXMWdjNttz8vGxmOnXUjcgEBERATdISqWlpdGlSxeKioqoUaMG06dPJy4u7rTXNmvWjE8++YT4+HiOHj3KG2+8QdeuXdmwYQN169Y97fcUFxdTXFxc8TwvLw+A0tJSSktLHf5+TrbpjLbFMTRGnkHj5P40Rp7hTOPUqX4IneqH8OzAZizacZCZ6zJJ3nyAvYePM2neDibN20Gj8EAGxUcxqHUUDcMDjQjf5fT32QMU5MKiCfbjPs+At/vVFy0ps7Im/TCLt+eyeMdBUjOOUGa1AXBFs9oE+3kbHKGIiIh7MDwp1axZM9auXcvRo0f59ttvGT58OPPnzz9tYqpLly6VVlF17dqVFi1aMHnyZF588cXTtj9u3DjGjh17yvnZs2cTEBDguDfyF0lJSU5rWxxDY+QZNE7uT2PkGc41Tn0D4fI2sOGIidW5JjYeNrEzt4B3f9/Bu7/voG6gjXZhVtqG26hVhe9iX1hYaHQIci7zX4WSYxCdAK1uNDoaAKxWGxsz8yqSUCm7DnG8tLzSNfXDAujaOJx/XNHYoChFRETcj+FJKR8fH5o0aQJA+/btSUlJ4Z133mHy5Mnn/F5vb2/atm3L9u3bz3jNU089xZgxYyqe5+XlERsby5VXXklwcPClv4G/KC0tJSkpiX79+uHtrU/B3JHGyDNonNyfxsgzXOg4DTnx9VhRKXM2HeDntCwW7TjI3gLYW2Dhp3RoV68mg1pH0b9lJLWDqlaG6uSKanFTB3fAyk/sx/1eBLMxN5K22WzsPljI4u25LNmRy9IdBzlcWHmVXXgNH7o2DqdbkzC6Ng4ntpbzPgwVERHxVIYnpf7KarVW2m53NuXl5aSlpXH11Vef8RpfX198fU+dMHt7ezv1lyhnty+XTmPkGTRO7k9j5BkudJxqeXtzc6f63NypPocKSpi1PpMZqftZvusQq9OPsDr9CC/9spkujcMYHB9D/1ZRVeJuYvq77ObmPA/WMmjSDxr1dGnXOceKWLL94IlE1EH2HTle6fUavl4kNqxF1yb2RFSzSNVkExERORdDk1JPPfUUAwYMoF69ehw7doypU6cyb948fvvtNwDuvPNO6tSpw7hx4wB44YUX6Ny5M02aNOHIkSO8/vrr7Nmzh3vvvdfItyEiIlKl1Qr0YVhifYYl1ic7r4iZ6+wJqrUZR1i8/SCLtx/kmR/Xc3nT2gxOiKFfXCSBvm73uZd4uowVsOknMJmh3wtO7y6vqJTlOw/Zt+Rtz2VbTn6l130sZtrWq0m3JuF0axJOfN0QvC3GrNwSERHxVIbOGHNycrjzzjvJzMwkJCSE+Ph4fvvtN/r16wdAeno65j8tyz58+DD33XcfWVlZhIaG0r59e5YsWXLGwugiIiLiWJHBftzTvSH3dG9I+sFCZqzbz4zU/WzOOkby5hySN+fg522mT/NIBidEc0WzCPy8LUaHLZ7OZoPZ/7Yft7kNIh0/9ysqLWf1yeLk2w+ybu8RTtQmB8BkgpYxwfYkVONwOjaohb+P/m6LiIhcCkOTUlOmTDnr6/Pmzav0/O233+btt992YkQiIiJyvuqFBTCyVxNG9mrCtuxjzDixgmpXbgE/p2Xyc1omNXy9uLJlJIMTYujeJFwrSeTibJ4JGcvByx96Pe2QJsutNtbvO8riHbks2X6QlN2HKC6zVrqmYXgg3ZqE0a1xOJ0bhREa6PlbVEVERNyJ1taLiIjIJWsaGcSYfkE80rcpG/bnMSPVvoJq/9Eivl+9j+9X7yM0wJsBraMZHB9Dp4a1sJhVb0fOQ3mpvZYUQJeREBxzUc3YbDZ2HChgyQ77drylOw6SV1RW6ZqIIF+6NQmna+MwujUJJ6am/yUGLyIiImejpJSIiIg4jMlkolWdEFrVCeGJ/s1ZnX6YGan7+Tktk9z8EqYuT2fq8nQignwZFB/D4IRo2sTWVEFoOSPzmv/Bwe0QEA7dRl/Q92YdLbJvxzuxGiorr6jS60F+XnRuFEa3E0moJhE19HdRRETEhZSUEhEREacwm010aFCLDg1q8cygOJbtPMSM1P3MWp9JzrFiPlm8i08W76JuqD+DE2K4JiGG5lG6Y5n8wav8OOaFr9mfXPEk+AWf9fqjhaUs3XmQJTtyWbQ9l50HCiq97uNlpkP90IrVUK3rhOClLaUiIiKGUVJKREREnM7LYqZ703C6Nw3nhSEtWbg1lxnr9pO0MZu9h48zad4OJs3bQZOIGgw+sYKqUe0aRoctBmuS/TOmwlyo1Rja33XK60Wl5azcfZhF23NZsiOX9fuOVipObjZB6zohdG0STvcm4bSvH6rC+yIiIm5ESSkRERFxKV8vC33jIukbF8nxknKSN2czI3U/c7ccYHtOPm/P2crbc7bSqk4wg+NjGJQQQx3V9ql+jmXSOOdX+3Hf58HiTVm5lXX7jrLkxB3yVqUfpuQvxckb1w6ke5NwujaxFycP8fd2fewiIiJyXpSUEhEREcP4+1gYFB/DoPgY8opKmb3BnqBatD2X9fvyWL8vj3GzNtOhfiiDE2K4unU0tYN8jQ5bXMAyfzxmWwmFEe2ZdqgViz9fyfKdBzlWXLk4eVSwH92ahNOtSRhdG4cTFeJnUMQiIiJyoZSUEhEREbcQ7OfNje3rcmP7uhwqKOGXtExmpO5nxe5DrNxzmJV7DjN2xga6Ng7nrq4N6BsXaXTI4iR7NqYQm/olALdnDGZ1+qaK10L8venSKMyehGoSTqPwQNUhExER8VBKSomIiIjbqRXow+2d63N75/pkHS3i5xMJqrUZR1i0PZfLLwsHlJSqqmw2K2utjci2hbLB0pweDWvRtbF9NVTLmBAsZiWhREREqgIlpURERMStRYX4cU/3htzTvSHpBwuZsW4/gxNijA5LnKh+XCd+6P4Fpv2prLq5FzUCtCVPRESkKtI9cEVERMRj1AsLYGSvJkSHqPB5VWYymRjZqzENQv3w1d3yREREqiwlpURERERERERExOWUlBIREREREREREZdTUkpERERERERERFxOSSkREREREREREXE5JaVERERERERERMTllJQSERERERERERGXU1JKRERERERERERcTkkpERERERERERFxOSWlRERERERERETE5ZSUEhERERERERERl1NSSkREREREREREXE5JKRERERERERERcTklpURERERERERExOWUlBIREREREREREZdTUkpERERERERERFzOy+gAXM1mswGQl5fnlPZLS0spLCwkLy8Pb29vp/Qhl0Zj5Bk0Tu5PY+QZNE4X5uT84OR8Qc5McyrRGHkGjZP70xh5Bo3ThTnfOVW1S0odO3YMgNjYWIMjEREREXd17NgxQkJCjA7DrWlOJSIiIudyrjmVyVbNPgq0Wq3s37+foKAgTCaTw9vPy8sjNjaWjIwMgoODHd6+XDqNkWfQOLk/jZFn0DhdGJvNxrFjx4iJicFsVpWDs9GcSjRGnkHj5P40Rp5B43RhzndOVe1WSpnNZurWrev0foKDg/UX1c1pjDyDxsn9aYw8g8bp/GmF1PnRnEpO0hh5Bo2T+9MYeQaN0/k7nzmVPgIUERERERERERGXU1JKRERERERERERcTkkpB/P19eW5557D19fX6FDkDDRGnkHj5P40Rp5B4ySeSn933Z/GyDNonNyfxsgzaJyco9oVOhcREREREREREeNppZSIiIiIiIiIiLicklIiIiIiIiIiIuJySkqJiIiIiIiIiIjLKSnlQO+99x4NGjTAz8+PxMREVqxYYXRI8ifjxo2jY8eOBAUFERERwZAhQ9iyZYvRYclZjB8/HpPJxMMPP2x0KPIX+/bt4/bbbycsLAx/f39at27NypUrjQ5LTigvL+eZZ56hYcOG+Pv707hxY1588UVURlI8heZU7k1zKs+jOZX70pzKvWlO5XxKSjnItGnTGDNmDM899xyrV68mISGBq666ipycHKNDkxPmz5/PyJEjWbZsGUlJSZSWlnLllVdSUFBgdGhyGikpKUyePJn4+HijQ5G/OHz4MN26dcPb25tZs2axceNG3nzzTUJDQ40OTU549dVXmTRpEhMnTmTTpk28+uqrvPbaa/znP/8xOjSRc9Kcyv1pTuVZNKdyX5pTuT/NqZxPd99zkMTERDp27MjEiRMBsFqtxMbG8uCDD/Lkk08aHJ2czoEDB4iIiGD+/PlcfvnlRocjf5Kfn0+7du14//33eemll2jTpg0TJkwwOiw54cknn2Tx4sUsXLjQ6FDkDAYNGkRkZCRTpkypOHfDDTfg7+/P//3f/xkYmci5aU7leTSncl+aU7k3zancn+ZUzqeVUg5QUlLCqlWr6Nu3b8U5s9lM3759Wbp0qYGRydkcPXoUgFq1ahkcifzVyJEjGThwYKV/U+I+fvrpJzp06MBNN91EREQEbdu25aOPPjI6LPmTrl27kpyczNatWwFITU1l0aJFDBgwwODIRM5OcyrPpDmV+9Kcyr1pTuX+NKdyPi+jA6gKcnNzKS8vJzIystL5yMhINm/ebFBUcjZWq5WHH36Ybt260apVK6PDkT/56quvWL16NSkpKUaHImewc+dOJk2axJgxY/jXv/5FSkoKDz30ED4+PgwfPtzo8AT7J695eXk0b94ci8VCeXk5L7/8MsOGDTM6NJGz0pzK82hO5b40p3J/mlO5P82pnE9JKamWRo4cyfr161m0aJHRocifZGRkMHr0aJKSkvDz8zM6HDkDq9VKhw4deOWVVwBo27Yt69ev54MPPtAEyk18/fXXfPHFF0ydOpWWLVuydu1aHn74YWJiYjRGIuJQmlO5J82pPIPmVO5PcyrnU1LKAcLDw7FYLGRnZ1c6n52dTVRUlEFRyZmMGjWKmTNnsmDBAurWrWt0OPInq1atIicnh3bt2lWcKy8vZ8GCBUycOJHi4mIsFouBEQpAdHQ0cXFxlc61aNGC7777zqCI5K8ef/xxnnzySYYOHQpA69at2bNnD+PGjdMEStya5lSeRXMq96U5lWfQnMr9aU7lfKop5QA+Pj60b9+e5OTkinNWq5Xk5GS6dOliYGTyZzabjVGjRjF9+nR+//13GjZsaHRI8hd9+vQhLS2NtWvXVjw6dOjAsGHDWLt2rSZPbqJbt26n3Pp769at1K9f36CI5K8KCwsxmyv/iLdYLFitVoMiEjk/mlN5Bs2p3J/mVJ5Bcyr3pzmV82mllIOMGTOG4cOH06FDBzp16sSECRMoKChgxIgRRocmJ4wcOZKpU6fy448/EhQURFZWFgAhISH4+/sbHJ0ABAUFnVKPIjAwkLCwMNWpcCOPPPIIXbt25ZVXXuHmm29mxYoVfPjhh3z44YdGhyYnDB48mJdffpl69erRsmVL1qxZw1tvvcXdd99tdGgi56Q5lfvTnMr9aU7lGTSncn+aUzmfyWaz2YwOoqqYOHEir7/+OllZWbRp04Z3332XxMREo8OSE0wm02nPf/rpp9x1112uDUbO2xVXXKHbF7uhmTNn8tRTT7Ft2zYaNmzImDFjuO+++4wOS044duwYzzzzDNOnTycnJ4eYmBhuvfVWnn32WXx8fIwOT+ScNKdyb5pTeSbNqdyT5lTuTXMq51NSSkREREREREREXE41pURERERERERExOWUlBIREREREREREZdTUkpERERERERERFxOSSkREREREREREXE5JaVERERERERERMTllJQSERERERERERGXU1JKRERERERERERcTkkpERERERERERFxOSWlREQugslk4ocffjA6DBERERGPpjmVSPWmpJSIeJy77roLk8l0yqN///5GhyYiIiLiMTSnEhGjeRkdgIjIxejfvz+ffvpppXO+vr4GRSMiIiLimTSnEhEjaaWUiHgkX19foqKiKj1CQ0MB+zLwSZMmMWDAAPz9/WnUqBHffvttpe9PS0ujd+/e+Pv7ExYWxv33309+fn6laz755BNatmyJr68v0dHRjBo1qtLrubm5XHfddQQEBNC0aVN++ukn575pEREREQfTnEpEjKSklIhUSc888ww33HADqampDBs2jKFDh7Jp0yYACgoKuOqqqwgNDSUlJYVvvvmGOXPmVJogTZo0iZEjR3L//feTlpbGTz/9RJMmTSr1MXbsWG6++WbWrVvH1VdfzbBhwzh06JBL36eIiIiIM2lOJSJOZRMR8TDDhw+3WSwWW2BgYKXHyy+/bLPZbDbA9ve//73S9yQmJtoeeOABm81ms3344Ye20NBQW35+fsXrP//8s81sNtuysrJsNpvNFhMTY3v66afPGANg+/e//13xPD8/3wbYZs2a5bD3KSIiIuJMmlOJiNFUU0pEPFKvXr2YNGlSpXO1atWqOO7SpUul17p06cLatWsB2LRpEwkJCQQGBla83q1bN6xWK1u2bMFkMrF//3769Olz1hji4+MrjgMDAwkODiYnJ+di35KIiIiIy2lOJSJGUlJKRDxSYGDgKUu/HcXf3/+8rvP29q703GQyYbVanRGSiIiIiFNoTiUiRlJNKRGpkpYtW3bK8xYtWgDQokULUlNTKSgoqHh98eLFmM1mmjVrRlBQEA0aNCA5OdmlMYuIiIi4G82pRMSZtFJKRDxScXExWVlZlc55eXkRHh4OwDfffEOHDh3o3r07X3zxBStWrGDKlCkADBs2jOeee47hw4fz/PPPc+DAAR588EHuuOMOIiMjAXj++ef5+9//TkREBAMGDODYsWMsXryYBx980LVvVERERMSJNKcSESMpKSUiHunXX38lOjq60rlmzZqxefNmwH4Xl6+++op//OMfREdH8+WXXxIXFwdAQEAAv/32G6NHj6Zjx44EBARwww038NZbb1W0NXz4cIqKinj77bd57LHHCA8P58Ybb3TdGxQRERFxAc2pRMRIJpvNZjM6CBERRzKZTEyfPp0hQ4YYHYqIiIiIx9KcSkScTTWlRERERERERETE5ZSUEhERERERERERl9P2PRERERERERERcTmtlBIREREREREREZdTUkpERERERERERFxOSSkREREREREREXE5JaVERERERERERMTllJQSERERERERERGXU1JKRERERERERERcTkkpERERERERERFxOSWlRERERERERETE5ZSUEhERERERERERl/t/f8OJ7Y2JKscAAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"# Save the model\n",
"\n",
"save_path = \"word_lstm_standard.pth\"\n",
"torch.save({\n",
" 'model_state_dict': model.state_dict(),\n",
" 'word2idx': word2idx,\n",
" 'idx2word': idx2word,\n",
" 'vocab_size': len(word2idx),\n",
" 'embed_size': embed_size,\n",
" 'hidden_size': hidden_size,\n",
" 'num_layers': num_layers,\n",
" 'dropout': dropout,\n",
" 'seq_length': seq_length\n",
"}, save_path)\n",
"print(f\"Model saved to {save_path}\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ejY0IN1QfFz4",
"outputId": "5b48210a-4a1f-4954-a0f9-e0c50f701ee7"
},
"execution_count": 11,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Model saved to word_lstm_standard.pth\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Load the Model\n",
"\n",
"def load_model(path):\n",
" checkpoint = torch.load(path, map_location=device)\n",
" model = WordLSTM(\n",
" checkpoint['vocab_size'],\n",
" checkpoint['embed_size'],\n",
" checkpoint['hidden_size'],\n",
" checkpoint['num_layers'],\n",
" checkpoint['dropout']\n",
" ).to(device)\n",
" model.load_state_dict(checkpoint['model_state_dict'])\n",
" model.eval()\n",
" return model, checkpoint['word2idx'], checkpoint['idx2word'], checkpoint['seq_length']\n",
"\n",
"loaded_model, loaded_word2idx, loaded_idx2word, loaded_seq_length = load_model(save_path)\n",
"print(\"Model loaded!\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Za9zPxsLfTAq",
"outputId": "52a645fc-8a56-44da-aba1-da290dc76946"
},
"execution_count": 12,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Model loaded!\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Generate Text\n",
"\n",
"def tokenize(text):\n",
" return re.findall(r\"\\b\\w+\\b|[^\\w\\s]\", text.lower())\n",
"\n",
"def generate_text(model, word2idx, idx2word, seq_length, seed, length=40, temperature=1.0):\n",
" model.eval()\n",
" seed_tokens = tokenize(seed.lower())\n",
" seed_encoded = [word2idx.get(w, 1) for w in seed_tokens]\n",
" if len(seed_encoded) < seq_length:\n",
" seed_encoded = [0]*(seq_length-len(seed_encoded)) + seed_encoded\n",
" else:\n",
" seed_encoded = seed_encoded[-seq_length:]\n",
" generated = seed_tokens.copy()\n",
" inp = torch.tensor([seed_encoded], dtype=torch.long, device=device)\n",
" hidden = None\n",
" for _ in range(length):\n",
" out, hidden = model(inp, hidden)\n",
" out = out[0].detach().cpu().numpy()\n",
" out = out / temperature\n",
" exp_out = np.exp(out - np.max(out))\n",
" probs = exp_out / np.sum(exp_out)\n",
" idx = np.random.choice(range(len(idx2word)), p=probs)\n",
" next_word = idx2word.get(idx, \"<UNK>\")\n",
" generated.append(next_word)\n",
" inp = torch.cat([inp[:, 1:], torch.tensor([[idx]], device=device)], dim=1)\n",
" return \" \".join(generated)\n",
"\n",
"seed_text = \"The universe is such a place where Krishna is the creator\"\n",
"print(\"Generated text (temperature=0.5):\\n\")\n",
"print(generate_text(loaded_model, loaded_word2idx, loaded_idx2word, loaded_seq_length, seed_text, length=100, temperature=0.2))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ek3K3dBLfXzW",
"outputId": "d05d7b63-687b-4ba0-b95c-483bcde8875b"
},
"execution_count": 21,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Generated text (temperature=0.5):\n",
"\n",
"the universe is such a place where krishna is the creator of the universe . it is possible that the gospels is that weâ t areas of multiple , and that the universe is that the gospels is that the values is the product of the universe . the number of nasaâ is the temperature . the number of slokas composed by the gods and the kaikeyas , the planets , the <UNK> , and the andhakas , the planets , the <UNK> , and the <UNK> , the <UNK> , the <UNK> , and the <UNK> , and the <UNK> , the <UNK> , and the <UNK> ,\n"
]
}
]
}
]
} |