--- library_name: transformers license: apache-2.0 base_model: - Qwen/Qwen2.5-VL-7B-Instruct pipeline_tag: image-text-to-text --- # ERGO: Efficient High-Resolution Visual Understanding for Vision-Language Models
ERGO (Efficient Reasoning & Guided Observation) is a large vision–language model trained with reinforcement learning on efficiency objectives, focusing on task-relevant regions to enhance accuracy and achieve up to a 3× speedup in inference.  ## Installation > `Python >= 3.10 is required.` ```bash curl -LsSf https://astral.sh/uv/install.sh | sh git clone https://github.com/nota-github/ERGO.git cd ERGO uv venv uv sync source .venv/bin/activate uv pip install -e . ``` ## Usage > We recommend using vLLM, as its `Automatic Prefix Caching` can significantly improve inference speed. This repository provides evaluation scripts for the following benchmarks: - [V* Bench](https://huggingface.co/datasets/craigwu/vstar_bench) - [HR-Bench](https://huggingface.co/datasets/DreamMr/HR-Bench) - [MME-RealWorld-lite](https://huggingface.co/datasets/yifanzhang114/MME-RealWorld-lite-lmms-eval) See [`data/README.md`](data/README.md) for how to prepare datasets ### Evaluation with vLLM 1. Serving with vLLM ```bash bash ./scripts/run_vllm.sh ``` 2. Run eval.py ```bash export MAX_VISION_TOKEN_NUM=1280 export VLLM_ENDPOINT=http://127.0.0.1:8008/v1 export DATA_ROOT=./data python ./src/ergo/eval.py \ --dataset {choose from [vstar, mmerwl, hrbench]} \ --data_root $DATA_ROOT\ --api_url $VLLM_ENDPOINT \ --max_vision_token_num $MAX_VISION_TOKEN_NUM ``` ### Inference with Hugging Face ```bash python ./src/ergo/infer.py \ --input_path {default = "./data/demo/demo.jpg"} \ --question {default = "Is the orange luggage on the left or right side of the purple umbrella?"} \ {--save_output} # optional ``` ## License This project is released under [Apache 2.0 licence](LICENSE). ## Acknowledgements - We would like to express our sincere appreciation to the following projects: - [Qwen2.5-VL](https://github.com/QwenLM/Qwen3-VL): The base model we utilized. They are originally licensed under Apache 2.0 License. - [VLM-R1](https://github.com/om-ai-lab/VLM-R1): The RL codebase we utilized. It is originally licensed under Apache 2.0 License. - [V*](https://github.com/penghao-wu/vstar), [HR-Bench](https://github.com/DreamMr/HR-Bench), [MME-RealWorld-lite](https://github.com/MME-Benchmarks/MME-RealWorld) : The evaluation benchmark dataset we utilized. - We also deeply appreciate the generous GPU resource support from [Gwangju AICA](http://www.aica-gj.kr/main.php). ## Citation ```bibtex @misc{lee2025ergoefficienthighresolutionvisual, title={ERGO: Efficient High-Resolution Visual Understanding for Vision-Language Models}, author={Jewon Lee and Wooksu Shin and Seungmin Yang and Ki-Ung Song and DongUk Lim and Jaeyeon Kim and Tae-Ho Kim and Bo-Kyeong Kim}, year={2025}, eprint={2509.21991}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2509.21991}, } ```