Update README.md
Browse files
README.md
CHANGED
|
@@ -15,13 +15,13 @@ license_link: https://developer.download.nvidia.com/licenses/nvidia-open-model-l
|
|
| 15 |
This model performs visual feature extraction.
|
| 16 |
For instance, RADIO generates image embeddings that can be used by a downstream model to classify images.
|
| 17 |
|
| 18 |
-
C-
|
| 19 |
* Base (90M parameters).
|
| 20 |
* Large (320M parameters).
|
| 21 |
-
* Huge (653M parameters).
|
| 22 |
* Gigantic (1.1B parameters).
|
| 23 |
|
| 24 |
-
C-
|
| 25 |
|
| 26 |
This model is ready for commercial/non-commercial use.
|
| 27 |
|
|
@@ -82,7 +82,7 @@ import torch
|
|
| 82 |
from PIL import Image
|
| 83 |
from transformers import AutoModel, CLIPImageProcessor
|
| 84 |
|
| 85 |
-
hf_repo = "nvidia/C-
|
| 86 |
|
| 87 |
image_processor = CLIPImageProcessor.from_pretrained(hf_repo)
|
| 88 |
model = AutoModel.from_pretrained(hf_repo, trust_remote_code=True)
|
|
@@ -128,17 +128,17 @@ The resulting tensor will have shape `(B,D,H,W)`, as is typically seen with comp
|
|
| 128 |
|
| 129 |
## Model Version(s)
|
| 130 |
|
| 131 |
-
* C-
|
| 132 |
-
* C-
|
| 133 |
-
* C-
|
| 134 |
-
* C-
|
| 135 |
|
| 136 |
**Links:**
|
| 137 |
|
| 138 |
-
* https://huggingface.co/nvidia/C-
|
| 139 |
-
* https://huggingface.co/nvidia/C-
|
| 140 |
-
* https://huggingface.co/nvidia/C-
|
| 141 |
-
* https://huggingface.co/nvidia/C-
|
| 142 |
|
| 143 |
# Training and Evaluation Datasets
|
| 144 |
|
|
|
|
| 15 |
This model performs visual feature extraction.
|
| 16 |
For instance, RADIO generates image embeddings that can be used by a downstream model to classify images.
|
| 17 |
|
| 18 |
+
C-RADIOv3 models are available in multiple sizes:
|
| 19 |
* Base (90M parameters).
|
| 20 |
* Large (320M parameters).
|
| 21 |
+
* Huge (653M parameters). (In training)
|
| 22 |
* Gigantic (1.1B parameters).
|
| 23 |
|
| 24 |
+
C-RADIOv3 was trained for 1M steps (400k more steps than v1), using inverse frequency sampling for data balancing, and [PHI Standardization](https://arxiv.org/abs/2410.01680) for teacher distribution balancing. As well as new techniques for summary distribution matching, and domain generalization.
|
| 25 |
|
| 26 |
This model is ready for commercial/non-commercial use.
|
| 27 |
|
|
|
|
| 82 |
from PIL import Image
|
| 83 |
from transformers import AutoModel, CLIPImageProcessor
|
| 84 |
|
| 85 |
+
hf_repo = "nvidia/C-RADIOv3-g"
|
| 86 |
|
| 87 |
image_processor = CLIPImageProcessor.from_pretrained(hf_repo)
|
| 88 |
model = AutoModel.from_pretrained(hf_repo, trust_remote_code=True)
|
|
|
|
| 128 |
|
| 129 |
## Model Version(s)
|
| 130 |
|
| 131 |
+
* C-RADIOv3-B (90M parameters).
|
| 132 |
+
* C-RADIOv3-L (320M parameters).
|
| 133 |
+
* C-RADIOv3-H (653M parameters).
|
| 134 |
+
* C-RADIOv3-g (1.2B parameters).
|
| 135 |
|
| 136 |
**Links:**
|
| 137 |
|
| 138 |
+
* https://huggingface.co/nvidia/C-RADIOv3-B
|
| 139 |
+
* https://huggingface.co/nvidia/C-RADIOv3-L
|
| 140 |
+
* https://huggingface.co/nvidia/C-RADIOv3-H
|
| 141 |
+
* https://huggingface.co/nvidia/C-RADIOv3-g
|
| 142 |
|
| 143 |
# Training and Evaluation Datasets
|
| 144 |
|