wasiuddina commited on
Commit
997bef2
·
verified ·
1 Parent(s): 96cdbfc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -0
README.md ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ license_name: nvidia-internal-scientific-research-and-development-model-license
5
+ license_link: >-
6
+ https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-internal-scientific-research-and-development-model-license/
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - nvidia
10
+ - pytorch
11
+ ---
12
+
13
+ # OpenCodeReasoning-CPP-Nemotron-32B Overview
14
+
15
+ ## Description
16
+
17
+ OpenCodeReasoning-CPP-Nemotron-32B is a large language model (LLM) which is a derivative of [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) (AKA the *reference model*).
18
+ It is a reasoning model that is post trained for reasoning while code generation. The model supports a context length of 32K tokens.
19
+
20
+ This model is ready for commercial use.
21
+
22
+ ### License/Terms of Use
23
+ GOVERNING TERMS: Your use of this model is governed by the [NVIDIA Internal Scientific Research and Development Model License.](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-internal-scientific-research-and-development-model-license/)
24
+
25
+ ### Deployment Geography:
26
+ Global<br>
27
+
28
+ ### Use Case: <br>
29
+ This model is intended for developers and researchers building LLMs. <br>
30
+
31
+ ### Release Date: <br>
32
+ Huggingface [04/25/2025] via https://huggingface.co/nvidia/OpenCodeReasoning-CPP-Nemotron-32B/ <br>
33
+
34
+
35
+ ## References
36
+ - [\[2504.01943\] OpenCodeReasoning: Advancing Data Distillation for Competitive Coding](https://arxiv.org/abs/2504.01943)
37
+
38
+
39
+ ## Model Architecture
40
+ - Architecture Type: Dense decoder-only Transformer model
41
+ - Network Architecture: Qwen2.5-32B-Instruct
42
+
43
+
44
+ ## Input
45
+ - **Input Type(s):** Text <br>
46
+ - **Input Format(s):** String <br>
47
+ - **Input Parameters:** One-Dimensional (1D) <br>
48
+ - **Other Properties Related to Input:** Context length up to 32,768 tokens <br>
49
+
50
+
51
+ ## Output
52
+ - **Output Type(s):** Text <br>
53
+ - **Output Format:** String <br>
54
+ - **Output Parameters:** One-Dimensional (1D) <br>
55
+ - **Other Properties Related to Output:** Context length up to 32,768 tokens <br>
56
+
57
+ Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. <br>
58
+
59
+
60
+ ## Software Integration
61
+ * Runtime Engine: Transformers, vLLM <br>
62
+ * Recommended Hardware Microarchitecture Compatibility: <br>
63
+ - NVIDIA Ampere
64
+ - NVIDIA Hopper
65
+ * Preferred/Supported Operating System(s): Linux <br>
66
+
67
+
68
+ ## Model Version(s)
69
+ 1.0 (4/25/2025) <br>
70
+
71
+
72
+ ## Training Dataset
73
+ The training corpus for OpenCodeReasoning-CPP-Nemotron-32B is [OpenCodeReasoning](https://huggingface.co/datasets/nvidia/OpenCodeReasoning) dataset, which is composed of competitive programming questions and DeepSeek-R1 generated responses in C++.
74
+ * Data Collection Method: Hybrid: Automated, Human, Synthetic <br>
75
+ * Data Labeling Method: Hybrid: Automated, Human, Synthetic <br>
76
+
77
+
78
+ ## Evaluation Dataset
79
+ We used the datasets listed in the next section to evaluate OpenCodeReasoning-CPP-Nemotron-32B. <br>
80
+ * Data Collection Method: Hybrid: Automated, Human, Synthetic <br>
81
+ * Data Labeling Method: Hybrid: Automated, Human, Synthetic <br>
82
+
83
+
84
+ ### [LiveCodeBench](https://huggingface.co/datasets/livecodebench/code_generation_lite)
85
+ | Easy | Medium | Hard | Avg. |
86
+ |:------|:------|:------|:-----|
87
+ | 98.4 | 77.2 | 30.4 | 61.7 |
88
+
89
+ ### [CodeContests](https://huggingface.co/datasets/deepmind/code_contests)
90
+ | Public | Private | Generated | All |
91
+ |:--------|:--------|:----------|:----|
92
+ | 60.3 | 36.6 | 42.7 | 24.4|
93
+
94
+
95
+ ## Inference
96
+ - **Engine:** vLLM <br>
97
+ - **Test Hardware** NVIDIA H100-80GB <br>
98
+
99
+
100
+ ## Ethical Considerations:
101
+
102
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
103
+
104
+ For more detailed information on ethical considerations for this model, please see the Model Card++ [Explainability](./EXPLAINABILITY.md), [Bias](./BIAS.md), [Safety & Security](./SAFETY_and_SECURITY.md), and [Privacy](./PRIVACY.md) Subcards.
105
+
106
+ Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
107
+
108
+
109
+ ## Citation
110
+
111
+ If you find the data useful, please cite:
112
+ ```
113
+ @article{ahmad2025opencodereasoning,
114
+ title={OpenCodeReasoning: Advancing Data Distillation for Competitive Coding},
115
+ author={Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain, Jocelyn Huang, Vahid Noroozi, Boris Ginsburg},
116
+ year={2025},
117
+ eprint={2504.01943},
118
+ archivePrefix={arXiv},
119
+ primaryClass={cs.CL},
120
+ url={https://arxiv.org/abs/2504.01943},
121
+ }