ob11 commited on
Commit
69792eb
·
verified ·
1 Parent(s): 12ea417

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -35
README.md CHANGED
@@ -1,36 +1,23 @@
1
  ---
2
  base_model: Qwen/Qwen2.5-VL-7B-Instruct
3
  library_name: transformers
4
- model_name: Q7B_mc0_sr_mc0_full_bs2_gs4_lr1e-5_VF_0826_2309
5
- tags:
6
- - generated_from_trainer
7
- - sft
8
- - trl
9
- licence: license
10
  ---
11
 
12
- # Model Card for Q7B_mc0_sr_mc0_full_bs2_gs4_lr1e-5_VF_0826_2309
13
 
14
- This model is a fine-tuned version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct).
15
- It has been trained using [TRL](https://github.com/huggingface/trl).
16
 
17
- ## Quick start
 
 
18
 
19
- ```python
20
- from transformers import pipeline
21
 
22
- question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
- generator = pipeline("text-generation", model="None", device="cuda")
24
- output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
- print(output["generated_text"])
26
- ```
27
-
28
- ## Training procedure
29
-
30
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/aisg-arf/multimodal-reasoning/runs/pj4oc0qh)
31
-
32
-
33
- This model was trained with SFT.
34
 
35
  ### Framework versions
36
 
@@ -41,18 +28,15 @@ This model was trained with SFT.
41
  - Tokenizers: 0.21.4
42
 
43
  ## Citations
44
-
45
-
46
-
47
- Cite TRL as:
48
 
49
  ```bibtex
50
- @misc{vonwerra2022trl,
51
- title = {{TRL: Transformer Reinforcement Learning}},
52
- author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
53
- year = 2020,
54
- journal = {GitHub repository},
55
- publisher = {GitHub},
56
- howpublished = {\url{https://github.com/huggingface/trl}}
 
57
  }
58
  ```
 
1
  ---
2
  base_model: Qwen/Qwen2.5-VL-7B-Instruct
3
  library_name: transformers
4
+ model_name: ob11/Qwen-VL-PRM-7B
5
+ licence: apache-2.0
6
+ datasets:
7
+ - ob11/VL-PRM300K-V1-train
 
 
8
  ---
9
 
10
+ # Model Summary
11
 
12
+ > Qwen-VL-PRM-3B is a process reward model finetuned from Qwen2.5-7B-Instruct on approximately 300,000 examples. It shows strong test-time scaling performance improvements on various advanced multimodal reasoning benchmarks despite being trained mainly on abstract reasoning datasets and elementary reasoning datasets.
 
13
 
14
+ - **Logs:** https://wandb.ai/aisg-arf/multimodal-reasoning/runs/pj4oc0qh
15
+ - **Repository:** [ob11/vlprm](https://github.com/theogbrand/vlprm/)
16
+ - **Paper:** https://arxiv.org/abs/
17
 
18
+ # Use
 
19
 
20
+ The model usage is documented [here](https://github.com/theogbrand/vlprm/blob/main/eval/tts_eval/reward_guided_search/VisualPRMv2.py).
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  ### Framework versions
23
 
 
28
  - Tokenizers: 0.21.4
29
 
30
  ## Citations
 
 
 
 
31
 
32
  ```bibtex
33
+ @misc{ong2025vlprms,
34
+ title={VL-PRMs: Vision-Language Process Reward Models},
35
+ author={Brandon Ong, Tej Deep Pala, Vernon Toh, William Chandra Tjhi and Soujanya Poria},
36
+ year={2025},
37
+ eprint={},
38
+ archivePrefix={arXiv},
39
+ primaryClass={cs.CL},
40
+ url={},
41
  }
42
  ```