File size: 1,855 Bytes
3052a65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: recitation-segmenter-v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# recitation-segmenter-v2
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.9958
- F1: 0.9964
- Loss: 0.0132
- Precision: 0.9976
- Recall: 0.9951
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 50
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall |
|:-------------:|:------:|:----:|:--------:|:------:|:---------------:|:---------:|:------:|
| 0.0701 | 0.2507 | 275 | 0.9953 | 0.9959 | 0.0249 | 0.9947 | 0.9971 |
| 0.0234 | 0.5014 | 550 | 0.9953 | 0.9959 | 0.0185 | 0.9940 | 0.9977 |
| 0.0186 | 0.7521 | 825 | 0.9958 | 0.9964 | 0.0132 | 0.9976 | 0.9951 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.2.1+cu121
- Datasets 3.5.0
- Tokenizers 0.21.1
|