--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: recitation-segmenter-v2 results: [] --- # recitation-segmenter-v2 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Accuracy: 0.9958 - F1: 0.9964 - Loss: 0.0132 - Precision: 0.9976 - Recall: 0.9951 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 50 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall | |:-------------:|:------:|:----:|:--------:|:------:|:---------------:|:---------:|:------:| | 0.0701 | 0.2507 | 275 | 0.9953 | 0.9959 | 0.0249 | 0.9947 | 0.9971 | | 0.0234 | 0.5014 | 550 | 0.9953 | 0.9959 | 0.0185 | 0.9940 | 0.9977 | | 0.0186 | 0.7521 | 825 | 0.9958 | 0.9964 | 0.0132 | 0.9976 | 0.9951 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.2.1+cu121 - Datasets 3.5.0 - Tokenizers 0.21.1