File size: 1,801 Bytes
6d8b63c be49485 6d8b63c 895cd60 6d8b63c be49485 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
license: apache-2.0
pipeline_tag: image-segmentation
tags:
- background-removal
---
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```
**Example:** Selfie segmentation with `onnx-community/mediapipe_selfie_segmentation`.
```js
import { AutoModel, AutoProcessor, RawImage } from '@huggingface/transformers';
// Load model and processor
const model_id = 'onnx-community/mediapipe_selfie_segmentation';
const model = await AutoModel.from_pretrained(model_id, { dtype: 'fp32' });
const processor = await AutoProcessor.from_pretrained(model_id);
// Load image from URL
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/selfie_segmentation.png';
const image = await RawImage.read(url);
// Pre-process image
const inputs = await processor(image);
// Predict alpha matte
const { alphas } = await model(inputs);
// Save output mask
const mask = await RawImage.fromTensor(alphas[0].mul(255).to('uint8')).resize(image.width, image.height);
mask.save('mask.png');
// (Optional) Apply mask to original image
const result = image.clone().putAlpha(mask);
result.save('result.png');
```
| Input image | Predicted mask | Output image |
| :----------:|:------------:|:------------:|
|  |  |  | |