BigDong commited on
Commit
b827895
Β·
1 Parent(s): 772efd0

update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -2
README.md CHANGED
@@ -19,17 +19,36 @@ library_name: transformers
19
  </p>
20
 
21
  ## What's New
22
- - [2025.06.06] **MiniCPM4** series are released! You can find technical report on [arXiv]().πŸ”₯πŸ”₯πŸ”₯
23
 
24
  ## MiniCPM4 Series
25
- - [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B): TODO **(<-- you are here)**
26
  - [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B): TODO
 
 
27
  - [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B): TODO
28
  - [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B): TODO
29
  - [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey): TODO
30
  - [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP): TODO
31
 
32
  ## Introduction
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ## Usage
35
  ### Inference with Transformers
@@ -37,9 +56,35 @@ library_name: transformers
37
  ### Inference with [vLLM](https://github.com/vllm-project/vllm)
38
 
39
  ## Evaluation Results
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  ## Statement
 
 
 
 
42
 
43
  ## LICENSE
 
 
 
44
 
45
  ## Citation
 
 
 
 
 
 
 
19
  </p>
20
 
21
  ## What's New
22
+ - [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report on [arXiv]().πŸ”₯πŸ”₯πŸ”₯
23
 
24
  ## MiniCPM4 Series
25
+ - [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B): TODO **<-- you are here**
26
  - [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B): TODO
27
+ - [MiniCPM4-8B-Eagle-FRSpec](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec)
28
+ - [MiniCPM4-8B-Eagle-FRSpec-QAT](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT)
29
  - [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B): TODO
30
  - [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B): TODO
31
  - [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey): TODO
32
  - [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP): TODO
33
 
34
  ## Introduction
35
+ MiniCPM 4 is an extremely efficient edge-side large model that has undergone efficient optimization across four dimensions: model architecture, learning algorithms, training data, and inference systems, achieving ultimate efficiency improvements.
36
+
37
+ - πŸ—οΈ **Efficient Model Architecture:**
38
+ - InfLLM v2 -- Trainable Sparse Attention Mechanism: Adopts a trainable sparse attention mechanism architecture where each token only needs to compute relevance with less than 5% of tokens in 128K long text processing, significantly reducing computational overhead for long texts
39
+
40
+ - 🧠 **Efficient Learning Algorithms:**
41
+ - Model Wind Tunnel 2.0 -- Efficient Predictable Scaling: Introduces scaling prediction methods for performance of downstream tasks, enabling more precise model training configuration search
42
+ - BitCPM -- Ultimate Ternary Quantization: Compresses model parameter bit-width to 3 values, achieving 90% extreme model bit-width reduction
43
+ - Efficient Training Engineering Optimization: Adopts FP8 low-precision computing technology combined with Multi-token Prediction training strategy
44
+
45
+ - πŸ“š **High-Quality Training Data:**
46
+ - UltraClean -- High-quality Pre-training Data Filtering and Generation: Builds iterative data cleaning strategies based on efficient data verification, open-sourcing high-quality Chinese and English pre-training dataset [UltraFinweb](https://huggingface.co/datasets/openbmb/Ultra-FineWeb)
47
+ - UltraChat v2 -- High-quality Supervised Fine-tuning Data Generation: Constructs large-scale high-quality supervised fine-tuning datasets covering multiple dimensions including knowledge-intensive data, reasoning-intensive data, instruction-following data, long text understanding data, and tool calling data
48
+
49
+ - ⚑ **Efficient Inference System:**
50
+ - FRSpec -- Lightweight Speculative Sampling: Achieves draft model acceleration through vocabulary pruning of draft model
51
+ - ArkInfer -- Cross-platform Deployment System: Supports efficient deployment across multiple backend environments, providing flexible cross-platform adaptation capabilities
52
 
53
  ## Usage
54
  ### Inference with Transformers
 
56
  ### Inference with [vLLM](https://github.com/vllm-project/vllm)
57
 
58
  ## Evaluation Results
59
+ On two typical end-side chips, Jetson AGX Orin and RTX 4090, MiniCPM4 demonstrates significantly faster processing speed compared to similar-size models in long text processing tasks. As text length increases, MiniCPM4's efficiency advantage becomes more pronounced. On the Jetson AGX Orin platform, compared to Qwen3-8B, MiniCPM4 achieves approximately 7x decoding speed improvement.
60
+
61
+ ![benchmark](https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm4/efficiency.png?raw=true)
62
+
63
+ #### Comprehensive Evaluation
64
+ MiniCPM4 launches end-side versions with 8B and 0.5B parameter scales, both achieving best-in-class performance in their respective categories.
65
+
66
+ ![benchmark](https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm4/benchmark.png?raw=true)
67
+
68
+ #### Long Text Evaluation
69
+ MiniCPM4 is pre-trained on 32K long texts and achieves length extension through YaRN technology. In the 128K long text needle-in-a-haystack task, MiniCPM4 demonstrates outstanding performance.
70
+
71
+ ![long-niah](https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm4/128k-niah.png?raw=true)
72
 
73
  ## Statement
74
+ - As a language model, MiniCPM generates content by learning from a vast amount of text.
75
+ - However, it does not possess the ability to comprehend or express personal opinions or value judgments.
76
+ - Any content generated by MiniCPM does not represent the viewpoints or positions of the model developers.
77
+ - Therefore, when using content generated by MiniCPM, users should take full responsibility for evaluating and verifying it on their own.
78
 
79
  ## LICENSE
80
+ - This repository is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
81
+ - The usage of MiniCPM model weights must strictly follow [MiniCPM Model License](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
82
+ - The models and weights of MiniCPM are completely free for academic research. after filling out a [questionnaire](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, are also available for free commercial use.
83
 
84
  ## Citation
85
+
86
+ - Please cite our [paper](TODO) if you find our work valuable.
87
+
88
+ ```bibtex
89
+ TODO
90
+ ```