|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Any, Tuple, Union |
|
from collections import Counter |
|
import torch |
|
import triton |
|
import triton.language as tl |
|
import warnings |
|
from torch import nn |
|
def is_hopper_gpu(): |
|
if torch.cuda.is_available(): |
|
device_capability = torch.cuda.get_device_capability() |
|
major, minor = device_capability |
|
return major == 9 |
|
return False |
|
def get_compressed_seqlens( |
|
cu_seqlens: torch.Tensor, kernel_size: int, kernel_stride: int |
|
): |
|
|
|
seqlens = cu_seqlens[1:] - cu_seqlens[:-1] |
|
y_seqlens = torch.floor((seqlens - kernel_size) / kernel_stride).to(torch.int32) + 1 |
|
|
|
y_seqlens[seqlens < kernel_size] = 0 |
|
y_cu_seqlens = torch.zeros( |
|
y_seqlens.shape[0] + 1, dtype=torch.int32, device=cu_seqlens.device |
|
) |
|
y_cu_seqlens[1:] = torch.cumsum(y_seqlens, dim=0) |
|
return y_seqlens, y_cu_seqlens |
|
|
|
|
|
def get_num_warps_stages(head_dim, block_size, is_hopper_gpu): |
|
""" |
|
Returns recommended num_warps and num_stages for a Sparse Attention kernel in Triton. |
|
|
|
Args: |
|
head_dim (int): Size of the head dimension. |
|
block_size (int): Size of the block in the attention matrix. |
|
is_hopper_gpu (bool): True if Hopper GPU, False if Ampere GPU. |
|
|
|
Returns: |
|
tuple: (num_warps, num_stages) recommended values. |
|
""" |
|
|
|
head_large = head_dim > 64 |
|
block_large = block_size > 64 |
|
|
|
if is_hopper_gpu: |
|
|
|
if head_large and block_large: |
|
num_warps = 8 |
|
num_stages = 3 |
|
elif head_large or block_large: |
|
num_warps = 4 |
|
num_stages = 3 |
|
else: |
|
num_warps = 2 |
|
num_stages = 2 |
|
else: |
|
|
|
if head_large and block_large: |
|
num_warps = 8 |
|
num_stages = 3 |
|
elif head_large or block_large: |
|
num_warps = 8 |
|
num_stages = 3 |
|
else: |
|
num_warps = 2 |
|
num_stages = 2 |
|
return num_warps, num_stages |
|
|
|
|
|
IS_HOPPER_GPU = is_hopper_gpu() |
|
|
|
|
|
@triton.jit |
|
def forward_kernel( |
|
q_ptr, |
|
k_ptr, |
|
v_ptr, |
|
o_ptr, |
|
lse_ptr, |
|
|
|
kernel_size, |
|
kernel_stride, |
|
|
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
|
|
NUM_KV_HEADS, |
|
NUM_SHARE_Q_HEADS, |
|
HEAD_DIM, |
|
|
|
sm_scale, |
|
|
|
stride_qn, |
|
stride_qh, |
|
stride_qd, |
|
stride_kn, |
|
stride_kh, |
|
stride_kd, |
|
stride_vn, |
|
stride_vh, |
|
stride_vd, |
|
stride_on, |
|
stride_oh, |
|
stride_od, |
|
stride_lh, |
|
stride_ln, |
|
|
|
BLOCK_SIZE_Q: tl.constexpr, |
|
BLOCK_SIZE_K: tl.constexpr, |
|
BLOCK_SIZE_D: tl.constexpr, |
|
): |
|
qk_scale = sm_scale * 1.44269504 |
|
|
|
pid_b = tl.program_id(0) |
|
pid_h = tl.program_id(1) |
|
pid_q = tl.program_id(2) |
|
pid_kh = pid_h // NUM_SHARE_Q_HEADS |
|
|
|
q_start = tl.load(cu_seqlens_q + pid_b) |
|
q_len = tl.load(cu_seqlens_q + pid_b + 1) - q_start |
|
k_start = tl.load(cu_seqlens_k + pid_b) |
|
k_len = tl.load(cu_seqlens_k + pid_b + 1) - k_start |
|
|
|
q_start_in_seq = pid_q * BLOCK_SIZE_Q + kernel_size - 1 |
|
if q_start_in_seq >= q_len: |
|
return |
|
|
|
q_ptrs = tl.make_block_ptr( |
|
base=q_ptr + q_start * stride_qn + pid_h * stride_qh, |
|
shape=(q_len, HEAD_DIM), |
|
strides=(stride_qn, stride_qd), |
|
offsets=(q_start_in_seq, 0), |
|
block_shape=(BLOCK_SIZE_Q, BLOCK_SIZE_D), |
|
order=(1, 0), |
|
) |
|
k_ptrs = tl.make_block_ptr( |
|
base=k_ptr + k_start * stride_kn + pid_kh * stride_kh, |
|
shape=(HEAD_DIM, k_len), |
|
strides=(stride_kd, stride_kn), |
|
offsets=(0, 0), |
|
block_shape=(BLOCK_SIZE_D, BLOCK_SIZE_K), |
|
order=(0, 1), |
|
) |
|
v_ptrs = tl.make_block_ptr( |
|
base=v_ptr + k_start * stride_vn + pid_kh * stride_vh, |
|
shape=(k_len, HEAD_DIM), |
|
strides=(stride_vn, stride_vd), |
|
offsets=(0, 0), |
|
block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_D), |
|
order=(1, 0), |
|
) |
|
|
|
q = tl.load(q_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
|
|
off_q = tl.arange(0, BLOCK_SIZE_Q) + q_start_in_seq |
|
off_k = tl.arange(0, BLOCK_SIZE_K) * kernel_stride + kernel_size - 1 |
|
m_i = tl.full((BLOCK_SIZE_Q,), float("-inf"), dtype=tl.float32) |
|
lse_i = tl.full((BLOCK_SIZE_Q,), float("-inf"), dtype=tl.float32) |
|
acc_o = tl.full((BLOCK_SIZE_Q, BLOCK_SIZE_D), 0, dtype=tl.float32) |
|
|
|
lo = 0 |
|
hi = min(k_len, (q_start_in_seq + BLOCK_SIZE_Q - kernel_size) // kernel_stride + 1) |
|
for i in range(lo, hi, BLOCK_SIZE_K): |
|
i = tl.multiple_of(i, BLOCK_SIZE_K) |
|
|
|
k = tl.load(k_ptrs, boundary_check=(1, 0), padding_option="zero") |
|
|
|
qk = tl.zeros((BLOCK_SIZE_Q, BLOCK_SIZE_K), dtype=tl.float32) |
|
qk += tl.where( |
|
off_q[:, None] >= (i * kernel_stride + off_k)[None, :], 0, float("-inf") |
|
) |
|
qk += tl.dot(q, k) * qk_scale |
|
|
|
m_ij = tl.maximum(m_i, tl.max(qk, axis=1)) |
|
p = tl.exp2(qk - m_ij[:, None]) |
|
l_ij = tl.sum(p, axis=1) |
|
|
|
acc_o_scale = tl.exp2(m_i - m_ij) |
|
acc_o = acc_o * acc_o_scale[:, None] |
|
|
|
v = tl.load(v_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
p = p.to(v.dtype) |
|
acc_o += tl.dot(p, v) |
|
|
|
m_i = m_ij |
|
lse_i = m_ij + tl.math.log2(tl.exp2(lse_i - m_ij) + l_ij) |
|
|
|
k_ptrs = tl.advance(k_ptrs, (0, BLOCK_SIZE_K)) |
|
v_ptrs = tl.advance(v_ptrs, (BLOCK_SIZE_K, 0)) |
|
|
|
acc_o = acc_o * tl.exp2(m_i - lse_i)[:, None] |
|
|
|
o_ptrs = tl.make_block_ptr( |
|
base=o_ptr + q_start * stride_on + pid_h * stride_oh, |
|
shape=(q_len, HEAD_DIM), |
|
strides=(stride_on, stride_od), |
|
offsets=(q_start_in_seq, 0), |
|
block_shape=(BLOCK_SIZE_Q, BLOCK_SIZE_D), |
|
order=(1, 0), |
|
) |
|
tl.store(o_ptrs, acc_o.to(o_ptr.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
l_ptrs = lse_ptr + q_start * stride_ln + pid_h * stride_lh + off_q * stride_ln |
|
tl.store(l_ptrs, lse_i, mask=off_q < q_len) |
|
|
|
|
|
@triton.jit |
|
def backward_sum_o_do( |
|
o_ptr, |
|
do_ptr, |
|
delta_ptr, |
|
o_len, |
|
HEAD_DIM, |
|
stride_on, |
|
stride_oh, |
|
stride_od, |
|
stride_don, |
|
stride_doh, |
|
stride_dod, |
|
stride_dh, |
|
stride_dn, |
|
BLOCK_SIZE_O: tl.constexpr, |
|
BLOCK_SIZE_D: tl.constexpr, |
|
): |
|
pid_n = tl.program_id(0) |
|
pid_h = tl.program_id(1) |
|
off_n = pid_n * BLOCK_SIZE_O + tl.arange(0, BLOCK_SIZE_O) |
|
off_d = tl.arange(0, BLOCK_SIZE_D) |
|
o = tl.load( |
|
o_ptr |
|
+ off_n[:, None] * stride_on |
|
+ pid_h * stride_oh |
|
+ off_d[None, :] * stride_od, |
|
mask=(off_n[:, None] < o_len) & (off_d[None, :] < HEAD_DIM), |
|
other=0, |
|
).to(tl.float32) |
|
do = tl.load( |
|
do_ptr |
|
+ off_n[:, None] * stride_don |
|
+ pid_h * stride_doh |
|
+ off_d[None, :] * stride_dod, |
|
mask=(off_n[:, None] < o_len) & (off_d[None, :] < HEAD_DIM), |
|
other=0, |
|
).to(tl.float32) |
|
delta = tl.sum(o * do, axis=1) |
|
tl.store( |
|
delta_ptr + pid_h * stride_dh + off_n * stride_dn, delta, mask=off_n < o_len |
|
) |
|
|
|
|
|
@triton.jit |
|
def backward_dkdv( |
|
q_ptr, |
|
k_ptr, |
|
v_ptr, |
|
lse_ptr, |
|
d_ptr, |
|
do_ptr, |
|
dk_ptr, |
|
dv_ptr, |
|
kernel_size, |
|
kernel_stride, |
|
|
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
|
|
NUM_KV_HEADS, |
|
NUM_SHARE_Q_HEADS, |
|
HEAD_DIM, |
|
|
|
sm_scale, |
|
|
|
stride_qn, |
|
stride_qh, |
|
stride_qd, |
|
stride_kn, |
|
stride_kh, |
|
stride_kd, |
|
stride_vn, |
|
stride_vh, |
|
stride_vd, |
|
stride_lh, |
|
stride_ln, |
|
stride_dh, |
|
stride_dn, |
|
stride_don, |
|
stride_doh, |
|
stride_dod, |
|
stride_dks, |
|
stride_dkn, |
|
stride_dkh, |
|
stride_dkd, |
|
stride_dvs, |
|
stride_dvn, |
|
stride_dvh, |
|
stride_dvd, |
|
|
|
BLOCK_SIZE_Q: tl.constexpr, |
|
BLOCK_SIZE_K: tl.constexpr, |
|
BLOCK_SIZE_D: tl.constexpr, |
|
): |
|
qk_scale = sm_scale * 1.44269504 |
|
|
|
pid_b = tl.program_id(0) |
|
pid_h = tl.program_id(1) |
|
pid_kh = pid_h // NUM_SHARE_Q_HEADS |
|
pid_sh = pid_h % NUM_SHARE_Q_HEADS |
|
pid_k = tl.program_id(2) |
|
|
|
q_start = tl.load(cu_seqlens_q + pid_b) |
|
q_len = tl.load(cu_seqlens_q + pid_b + 1) - q_start |
|
k_start = tl.load(cu_seqlens_k + pid_b) |
|
k_len = tl.load(cu_seqlens_k + pid_b + 1) - k_start |
|
if BLOCK_SIZE_K * pid_k >= k_len: |
|
return |
|
|
|
k_ptrs = tl.make_block_ptr( |
|
base=k_ptr + k_start * stride_kn + pid_kh * stride_kh, |
|
shape=(k_len, HEAD_DIM), |
|
strides=(stride_kn, stride_kd), |
|
offsets=(pid_k * BLOCK_SIZE_K, 0), |
|
block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_D), |
|
order=(1, 0), |
|
) |
|
dk_ptrs = tl.make_block_ptr( |
|
base=dk_ptr + k_start * stride_dkn + pid_kh * stride_dkh + pid_sh * stride_dks, |
|
shape=(k_len, HEAD_DIM), |
|
strides=(stride_dkn, stride_dkd), |
|
offsets=(pid_k * BLOCK_SIZE_K, 0), |
|
block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_D), |
|
order=(1, 0), |
|
) |
|
v_ptrs = tl.make_block_ptr( |
|
base=v_ptr + k_start * stride_vn + pid_kh * stride_vh, |
|
shape=(k_len, HEAD_DIM), |
|
strides=(stride_vn, stride_vd), |
|
offsets=(pid_k * BLOCK_SIZE_K, 0), |
|
block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_D), |
|
order=(1, 0), |
|
) |
|
dv_ptrs = tl.make_block_ptr( |
|
base=dv_ptr + k_start * stride_dvn + pid_kh * stride_dvh + pid_sh * stride_dvs, |
|
shape=(k_len, HEAD_DIM), |
|
strides=(stride_dvn, stride_dvd), |
|
offsets=(pid_k * BLOCK_SIZE_K, 0), |
|
block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_D), |
|
order=(1, 0), |
|
) |
|
|
|
off_q = tl.arange(0, BLOCK_SIZE_Q) |
|
off_k = ( |
|
pid_k * BLOCK_SIZE_K * kernel_stride |
|
+ tl.arange(0, BLOCK_SIZE_K) * kernel_stride |
|
+ kernel_size |
|
- 1 |
|
) |
|
|
|
k = tl.load(k_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
v = tl.load(v_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
|
|
dk = tl.zeros((BLOCK_SIZE_K, BLOCK_SIZE_D), dtype=tl.float32) |
|
dv = tl.zeros((BLOCK_SIZE_K, BLOCK_SIZE_D), dtype=tl.float32) |
|
q_lo = pid_k * BLOCK_SIZE_K * kernel_stride + kernel_size - 1 |
|
q_ptrs = tl.make_block_ptr( |
|
base=q_ptr + q_start * stride_qn + pid_h * stride_qh, |
|
shape=(HEAD_DIM, q_len), |
|
strides=(stride_qd, stride_qn), |
|
offsets=(0, q_lo), |
|
block_shape=(BLOCK_SIZE_D, BLOCK_SIZE_Q), |
|
order=(0, 1), |
|
) |
|
do_ptrs = tl.make_block_ptr( |
|
base=do_ptr + q_start * stride_don + pid_h * stride_doh, |
|
shape=(HEAD_DIM, q_len), |
|
strides=(stride_dod, stride_don), |
|
offsets=(0, q_lo), |
|
block_shape=(BLOCK_SIZE_D, BLOCK_SIZE_Q), |
|
order=(0, 1), |
|
) |
|
d_ptrs = tl.make_block_ptr( |
|
base=d_ptr + q_start * stride_dn + pid_h * stride_dh, |
|
shape=(1, q_len), |
|
strides=(0, stride_dn), |
|
offsets=(0, q_lo), |
|
block_shape=(1, BLOCK_SIZE_Q), |
|
order=(1, 0), |
|
) |
|
lse_ptrs = tl.make_block_ptr( |
|
base=lse_ptr + q_start * stride_ln + pid_h * stride_lh, |
|
shape=(1, q_len), |
|
strides=(0, stride_ln), |
|
offsets=(0, q_lo), |
|
block_shape=(1, BLOCK_SIZE_Q), |
|
order=(0, 1), |
|
) |
|
|
|
for i in range(q_lo, q_len, BLOCK_SIZE_Q): |
|
|
|
q = tl.load(q_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
do = tl.load(do_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
lse = tl.load(lse_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
d = tl.load(d_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
|
|
|
|
qk = tl.where(off_k[:, None] <= (off_q + i)[None, :], float(0.0), float("-inf")) |
|
qk += tl.dot(k, q) * qk_scale |
|
|
|
|
|
p = tl.exp2(qk - lse) |
|
|
|
dp = tl.dot(v, do) |
|
ds = sm_scale * p * (dp - d) |
|
|
|
p = p.to(do.dtype) |
|
ds = ds.to(q.dtype) |
|
|
|
|
|
dk += tl.dot(ds, tl.trans(q)) |
|
dv += tl.dot(p, tl.trans(do)) |
|
|
|
q_ptrs = tl.advance(q_ptrs, (0, BLOCK_SIZE_Q)) |
|
do_ptrs = tl.advance(do_ptrs, (0, BLOCK_SIZE_Q)) |
|
lse_ptrs = tl.advance(lse_ptrs, (0, BLOCK_SIZE_Q)) |
|
d_ptrs = tl.advance(d_ptrs, (0, BLOCK_SIZE_Q)) |
|
|
|
tl.store(dk_ptrs, dk.to(dk_ptr.dtype.element_ty), boundary_check=(0, 1)) |
|
tl.store(dv_ptrs, dv.to(dv_ptr.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
@triton.jit |
|
def backward_dq( |
|
q_ptr, |
|
k_ptr, |
|
v_ptr, |
|
lse_ptr, |
|
d_ptr, |
|
do_ptr, |
|
dq_ptr, |
|
kernel_size, |
|
kernel_stride, |
|
|
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
|
|
NUM_KV_HEADS, |
|
NUM_SHARE_Q_HEADS, |
|
HEAD_DIM, |
|
|
|
sm_scale, |
|
|
|
stride_qn, |
|
stride_qh, |
|
stride_qd, |
|
stride_kn, |
|
stride_kh, |
|
stride_kd, |
|
stride_vn, |
|
stride_vh, |
|
stride_vd, |
|
stride_lh, |
|
stride_ln, |
|
stride_dh, |
|
stride_dn, |
|
stride_don, |
|
stride_doh, |
|
stride_dod, |
|
stride_dqn, |
|
stride_dqh, |
|
stride_dqd, |
|
|
|
BLOCK_SIZE_Q: tl.constexpr, |
|
BLOCK_SIZE_K: tl.constexpr, |
|
BLOCK_SIZE_D: tl.constexpr, |
|
): |
|
qk_scale = sm_scale * 1.44269504 |
|
|
|
pid_b = tl.program_id(0) |
|
pid_h = tl.program_id(1) |
|
pid_q = tl.program_id(2) |
|
pid_kh = pid_h // NUM_SHARE_Q_HEADS |
|
|
|
q_start = tl.load(cu_seqlens_q + pid_b) |
|
q_len = tl.load(cu_seqlens_q + pid_b + 1) - q_start |
|
k_start = tl.load(cu_seqlens_k + pid_b) |
|
k_len = tl.load(cu_seqlens_k + pid_b + 1) - k_start |
|
|
|
q_start_in_seq = pid_q * BLOCK_SIZE_Q + kernel_size - 1 |
|
if q_start_in_seq >= q_len: |
|
return |
|
|
|
q_ptrs = tl.make_block_ptr( |
|
base=q_ptr + q_start * stride_qn + pid_h * stride_qh, |
|
shape=(q_len, HEAD_DIM), |
|
strides=(stride_qn, stride_qd), |
|
offsets=(q_start_in_seq, 0), |
|
block_shape=(BLOCK_SIZE_Q, BLOCK_SIZE_D), |
|
order=(1, 0), |
|
) |
|
dq_ptrs = tl.make_block_ptr( |
|
base=dq_ptr + q_start * stride_dqn + pid_h * stride_dqh, |
|
shape=(q_len, HEAD_DIM), |
|
strides=(stride_dqn, stride_dqd), |
|
offsets=(q_start_in_seq, 0), |
|
block_shape=(BLOCK_SIZE_Q, BLOCK_SIZE_D), |
|
order=(1, 0), |
|
) |
|
k_ptrs = tl.make_block_ptr( |
|
base=k_ptr + k_start * stride_kn + pid_kh * stride_kh, |
|
shape=(k_len, HEAD_DIM), |
|
strides=(stride_kn, stride_kd), |
|
offsets=(0, 0), |
|
block_shape=(BLOCK_SIZE_K, BLOCK_SIZE_D), |
|
order=(1, 0), |
|
) |
|
v_ptrs = tl.make_block_ptr( |
|
base=v_ptr + k_start * stride_vn + pid_kh * stride_vh, |
|
shape=(HEAD_DIM, k_len), |
|
strides=(stride_vd, stride_vn), |
|
offsets=(0, 0), |
|
block_shape=(BLOCK_SIZE_D, BLOCK_SIZE_K), |
|
order=(0, 1), |
|
) |
|
do_ptrs = tl.make_block_ptr( |
|
base=do_ptr + q_start * stride_don + pid_h * stride_doh, |
|
shape=(q_len, HEAD_DIM), |
|
strides=(stride_don, stride_dod), |
|
offsets=(q_start_in_seq, 0), |
|
block_shape=(BLOCK_SIZE_Q, BLOCK_SIZE_D), |
|
order=(1, 0), |
|
) |
|
d_ptrs = tl.make_block_ptr( |
|
base=d_ptr + q_start * stride_dn + pid_h * stride_dh, |
|
shape=(q_len, 1), |
|
strides=(stride_dn, stride_dh), |
|
offsets=(q_start_in_seq, 0), |
|
block_shape=(BLOCK_SIZE_Q, 1), |
|
order=(0, 1), |
|
) |
|
lse_ptrs = tl.make_block_ptr( |
|
base=lse_ptr + q_start * stride_ln + pid_h * stride_lh, |
|
shape=(q_len, 1), |
|
strides=(stride_ln, stride_lh), |
|
offsets=(q_start_in_seq, 0), |
|
block_shape=(BLOCK_SIZE_Q, 1), |
|
order=(0, 1), |
|
) |
|
|
|
off_q = tl.arange(0, BLOCK_SIZE_Q) + q_start_in_seq |
|
off_k = tl.arange(0, BLOCK_SIZE_K) * kernel_stride + kernel_size - 1 |
|
|
|
q = tl.load(q_ptrs, boundary_check=(1, 0), padding_option="zero") |
|
do = tl.load(do_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
lse = tl.load(lse_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
d = tl.load(d_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
|
|
dq = tl.zeros((BLOCK_SIZE_Q, BLOCK_SIZE_D), dtype=tl.float32) |
|
lo = 0 |
|
hi = min(k_len, (q_start_in_seq + BLOCK_SIZE_Q - kernel_size) // kernel_stride + 1) |
|
for i in range(lo, hi, BLOCK_SIZE_K): |
|
|
|
k = tl.load(k_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
v = tl.load(v_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
|
|
qk = tl.zeros((BLOCK_SIZE_Q, BLOCK_SIZE_K), dtype=tl.float32) |
|
qk += tl.where( |
|
off_q[:, None] >= (i * kernel_stride + off_k)[None, :], 0, float("-inf") |
|
) |
|
qk += tl.dot(q, tl.trans(k)) * qk_scale |
|
|
|
p = tl.exp2(qk - lse) |
|
dp = tl.dot(do, v) |
|
ds = sm_scale * p * (dp - d) |
|
|
|
ds = ds.to(q.dtype) |
|
|
|
dq += tl.dot(ds, k) |
|
|
|
k_ptrs = tl.advance(k_ptrs, (BLOCK_SIZE_K, 0)) |
|
v_ptrs = tl.advance(v_ptrs, (0, BLOCK_SIZE_K)) |
|
|
|
tl.store(dq_ptrs, dq.to(dq_ptr.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
def _compressed_attention_fwd( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
kernel_size: int, |
|
kernel_stride: int, |
|
cu_seqlens_q: torch.Tensor, |
|
cu_seqlens_k: torch.Tensor, |
|
max_seqlen_q: torch.Tensor, |
|
max_seqlen_k: torch.Tensor, |
|
sm_scale: float, |
|
): |
|
|
|
assert k.dtype == q.dtype and v.dtype == q.dtype |
|
assert cu_seqlens_q.dtype == torch.int32 and cu_seqlens_k.dtype == torch.int32 |
|
|
|
q_len, num_q_heads, head_dim = q.shape |
|
k_len, num_k_heads, head_dim = k.shape |
|
v_len, num_v_heads, head_dim = v.shape |
|
batch_size = cu_seqlens_q.shape[0] - 1 |
|
assert k_len == v_len and q_len > k_len |
|
|
|
assert num_k_heads == num_v_heads |
|
assert num_q_heads % num_k_heads == 0 |
|
num_share_q_heads = num_q_heads // num_k_heads |
|
|
|
o = torch.zeros_like(q) |
|
lse = torch.full( |
|
(num_q_heads, q_len), |
|
fill_value=-torch.inf, |
|
dtype=torch.float32, |
|
device=q.device, |
|
) |
|
|
|
grid = lambda META: ( |
|
batch_size, |
|
num_q_heads, |
|
triton.cdiv(max_seqlen_q, META["BLOCK_SIZE_Q"]), |
|
) |
|
BLOCK_SIZE_Q = 128 |
|
BLOCK_SIZE_K = 128 |
|
BLOCK_SIZE_D = triton.next_power_of_2(head_dim) |
|
num_warps, num_stages = get_num_warps_stages(head_dim, BLOCK_SIZE_Q, IS_HOPPER_GPU) |
|
forward_kernel[grid]( |
|
q, |
|
k, |
|
v, |
|
o, |
|
lse, |
|
kernel_size, |
|
kernel_stride, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
num_k_heads, |
|
num_share_q_heads, |
|
head_dim, |
|
sm_scale, |
|
q.stride(0), |
|
q.stride(1), |
|
q.stride(2), |
|
k.stride(0), |
|
k.stride(1), |
|
k.stride(2), |
|
v.stride(0), |
|
v.stride(1), |
|
v.stride(2), |
|
o.stride(0), |
|
o.stride(1), |
|
o.stride(2), |
|
lse.stride(0), |
|
lse.stride(1), |
|
BLOCK_SIZE_Q=BLOCK_SIZE_Q, |
|
BLOCK_SIZE_K=BLOCK_SIZE_K, |
|
BLOCK_SIZE_D=BLOCK_SIZE_D, |
|
num_warps=num_warps, |
|
num_stages=num_stages, |
|
) |
|
return o, lse |
|
|
|
|
|
def _compressed_attention_bwd( |
|
o: torch.Tensor, |
|
do: torch.Tensor, |
|
lse: torch.Tensor, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
kernel_size: int, |
|
kernel_stride: int, |
|
cu_seqlens_q: torch.Tensor, |
|
cu_seqlens_k: torch.Tensor, |
|
max_seqlen_q: torch.Tensor, |
|
max_seqlen_k: torch.Tensor, |
|
sm_scale: float, |
|
): |
|
q_len, num_q_heads, head_dim = q.shape |
|
k_len, num_k_heads, head_dim = k.shape |
|
v_len, num_v_heads, head_dim = v.shape |
|
o_len, num_o_heads, head_dim = o.shape |
|
num_share_q_heads = num_q_heads // num_k_heads |
|
|
|
delta = torch.zeros([num_o_heads, o_len], device=o.device, dtype=torch.float32) |
|
grid = lambda META: (triton.cdiv(o_len, META["BLOCK_SIZE_O"]), num_o_heads) |
|
BLOCK_SIZE_O = 256 |
|
BLOCK_SIZE_D = triton.next_power_of_2(head_dim) |
|
num_warps, num_stages = get_num_warps_stages(head_dim, BLOCK_SIZE_O, IS_HOPPER_GPU) |
|
backward_sum_o_do[grid]( |
|
o, |
|
do, |
|
delta, |
|
o_len, |
|
head_dim, |
|
o.stride(0), |
|
o.stride(1), |
|
o.stride(2), |
|
do.stride(0), |
|
do.stride(1), |
|
do.stride(2), |
|
delta.stride(0), |
|
delta.stride(1), |
|
BLOCK_SIZE_O=BLOCK_SIZE_O, |
|
BLOCK_SIZE_D=BLOCK_SIZE_D, |
|
num_warps=num_warps, |
|
num_stages=num_stages, |
|
) |
|
|
|
dk = torch.zeros( |
|
num_share_q_heads, k_len, num_k_heads, head_dim, device=k.device, dtype=k.dtype |
|
) |
|
dv = torch.zeros( |
|
num_share_q_heads, k_len, num_k_heads, head_dim, device=k.device, dtype=k.dtype |
|
) |
|
batch_size = cu_seqlens_q.shape[0] - 1 |
|
grid = lambda META: ( |
|
batch_size, |
|
num_q_heads, |
|
triton.cdiv(max_seqlen_k, META["BLOCK_SIZE_K"]), |
|
) |
|
BLOCK_SIZE_Q = 64 |
|
BLOCK_SIZE_K = 128 |
|
BLOCK_SIZE_D = triton.next_power_of_2(head_dim) |
|
num_warps, num_stages = get_num_warps_stages(head_dim, BLOCK_SIZE_K, IS_HOPPER_GPU) |
|
backward_dkdv[grid]( |
|
q, |
|
k, |
|
v, |
|
lse, |
|
delta, |
|
do, |
|
dk, |
|
dv, |
|
kernel_size, |
|
kernel_stride, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
num_k_heads, |
|
num_share_q_heads, |
|
head_dim, |
|
sm_scale, |
|
q.stride(0), |
|
q.stride(1), |
|
q.stride(2), |
|
k.stride(0), |
|
k.stride(1), |
|
k.stride(2), |
|
v.stride(0), |
|
v.stride(1), |
|
v.stride(2), |
|
lse.stride(0), |
|
lse.stride(1), |
|
delta.stride(0), |
|
delta.stride(1), |
|
do.stride(0), |
|
do.stride(1), |
|
do.stride(2), |
|
dk.stride(0), |
|
dk.stride(1), |
|
dk.stride(2), |
|
dk.stride(3), |
|
dv.stride(0), |
|
dv.stride(1), |
|
dv.stride(2), |
|
dv.stride(3), |
|
BLOCK_SIZE_Q=BLOCK_SIZE_Q, |
|
BLOCK_SIZE_K=BLOCK_SIZE_K, |
|
BLOCK_SIZE_D=BLOCK_SIZE_D, |
|
num_warps=num_warps, |
|
num_stages=num_stages, |
|
) |
|
dk = dk.sum(0) |
|
dv = dv.sum(0) |
|
|
|
dq = torch.zeros_like(q) |
|
grid = lambda META: ( |
|
batch_size, |
|
num_q_heads, |
|
triton.cdiv(max_seqlen_q, META["BLOCK_SIZE_Q"]), |
|
) |
|
BLOCK_SIZE_Q = 128 |
|
BLOCK_SIZE_K = 64 |
|
num_warps, num_stages = get_num_warps_stages(head_dim, BLOCK_SIZE_Q, IS_HOPPER_GPU) |
|
backward_dq[grid]( |
|
q, |
|
k, |
|
v, |
|
lse, |
|
delta, |
|
do, |
|
dq, |
|
kernel_size, |
|
kernel_stride, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
num_k_heads, |
|
num_share_q_heads, |
|
head_dim, |
|
sm_scale, |
|
q.stride(0), |
|
q.stride(1), |
|
q.stride(2), |
|
k.stride(0), |
|
k.stride(1), |
|
k.stride(2), |
|
v.stride(0), |
|
v.stride(1), |
|
v.stride(2), |
|
lse.stride(0), |
|
lse.stride(1), |
|
delta.stride(0), |
|
delta.stride(1), |
|
do.stride(0), |
|
do.stride(1), |
|
do.stride(2), |
|
dq.stride(0), |
|
dq.stride(1), |
|
dq.stride(2), |
|
BLOCK_SIZE_Q=BLOCK_SIZE_Q, |
|
BLOCK_SIZE_K=BLOCK_SIZE_K, |
|
BLOCK_SIZE_D=BLOCK_SIZE_D, |
|
num_warps=num_warps, |
|
num_stages=num_stages, |
|
) |
|
return dq, dk, dv |
|
|
|
|
|
class CompressedAttention(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
kernel_size: int, |
|
kernel_stride: int, |
|
cu_seqlens_q: torch.Tensor, |
|
cu_seqlens_k: torch.Tensor, |
|
max_seqlen_q: torch.Tensor, |
|
max_seqlen_k: torch.Tensor, |
|
sm_scale=None, |
|
): |
|
|
|
assert q.dtype == torch.bfloat16 or q.dtype == torch.float16 |
|
assert q.dtype == k.dtype and k.dtype == v.dtype |
|
assert cu_seqlens_q.dtype == torch.int32 and cu_seqlens_k.dtype == torch.int32 |
|
|
|
if sm_scale is None: |
|
sm_scale = 1 / math.sqrt(q.shape[-1]) |
|
o, lse = _compressed_attention_fwd( |
|
q, |
|
k, |
|
v, |
|
kernel_size, |
|
kernel_stride, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
max_seqlen_q, |
|
max_seqlen_k, |
|
sm_scale, |
|
) |
|
ctx.save_for_backward(q, k, v, o, lse, cu_seqlens_q, cu_seqlens_k) |
|
ctx.sm_scale = sm_scale |
|
ctx.max_seqlen_q = max_seqlen_q |
|
ctx.max_seqlen_k = max_seqlen_k |
|
ctx.kernel_size = kernel_size |
|
ctx.kernel_stride = kernel_stride |
|
return o, lse |
|
|
|
@staticmethod |
|
def backward(ctx, do: torch.Tensor, *args) -> Any: |
|
q, k, v, o, lse, cu_seqlens_q, cu_seqlens_k = ctx.saved_tensors |
|
max_seqlen_q = ctx.max_seqlen_q |
|
max_seqlen_k = ctx.max_seqlen_k |
|
sm_scale = ctx.sm_scale |
|
kernel_size = ctx.kernel_size |
|
kernel_stride = ctx.kernel_stride |
|
dq, dk, dv = _compressed_attention_bwd( |
|
o, |
|
do, |
|
lse, |
|
q, |
|
k, |
|
v, |
|
kernel_size, |
|
kernel_stride, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
max_seqlen_q, |
|
max_seqlen_k, |
|
sm_scale, |
|
) |
|
return dq, dk, dv, None, None, None, None, None, None, None |
|
|
|
|
|
@triton.jit |
|
def score_kernel( |
|
q_ptr, |
|
k_ptr, |
|
lse_ptr, |
|
s_ptr, |
|
kernel_size, |
|
kernel_stride, |
|
|
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
|
|
NUM_KV_HEADS, |
|
NUM_SHARE_Q_HEADS, |
|
HEAD_DIM, |
|
|
|
sm_scale, |
|
|
|
stride_qn, |
|
stride_qh, |
|
stride_qd, |
|
stride_kn, |
|
stride_kh, |
|
stride_kd, |
|
stride_lh, |
|
stride_ln, |
|
stride_sh, |
|
stride_sq, |
|
stride_sk, |
|
|
|
BLOCK_SIZE_Q: tl.constexpr, |
|
BLOCK_SIZE_K: tl.constexpr, |
|
BLOCK_SIZE_D: tl.constexpr, |
|
): |
|
qk_scale = sm_scale * 1.44269504 |
|
|
|
pid_bkh = tl.program_id(0) |
|
pid_b = pid_bkh // NUM_KV_HEADS |
|
pid_kh = pid_bkh % NUM_KV_HEADS |
|
pid_q = tl.program_id(1) |
|
pid_k = tl.program_id(2) |
|
|
|
q_start = tl.load(cu_seqlens_q + pid_b) |
|
q_len = tl.load(cu_seqlens_q + pid_b + 1) - q_start |
|
k_start = tl.load(cu_seqlens_k + pid_b) |
|
k_len = tl.load(cu_seqlens_k + pid_b + 1) - k_start |
|
if pid_q * BLOCK_SIZE_Q >= q_len or pid_k * BLOCK_SIZE_K >= k_len: |
|
return |
|
|
|
k_ptrs = tl.make_block_ptr( |
|
base=k_ptr + k_start * stride_kn + pid_kh * stride_kh, |
|
shape=(HEAD_DIM, k_len), |
|
strides=(stride_kd, stride_kn), |
|
offsets=(0, pid_k * BLOCK_SIZE_K), |
|
block_shape=(BLOCK_SIZE_D, BLOCK_SIZE_K), |
|
order=(0, 1), |
|
) |
|
k = tl.load(k_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
|
|
off_q = tl.arange(0, BLOCK_SIZE_Q) + pid_q * BLOCK_SIZE_Q |
|
off_k = tl.arange(0, BLOCK_SIZE_K) + pid_k * BLOCK_SIZE_K |
|
causal_mask = off_q[:, None] >= (off_k * kernel_stride + kernel_size - 1)[None, :] |
|
|
|
s = tl.zeros((BLOCK_SIZE_Q, BLOCK_SIZE_K), dtype=tl.float32) |
|
|
|
for h in range(NUM_SHARE_Q_HEADS): |
|
pid_h = pid_kh * NUM_SHARE_Q_HEADS + h |
|
q_ptrs = tl.make_block_ptr( |
|
base=q_ptr + q_start * stride_qn + pid_h * stride_qh, |
|
shape=(q_len, HEAD_DIM), |
|
strides=(stride_qn, stride_qd), |
|
offsets=(pid_q * BLOCK_SIZE_Q, 0), |
|
block_shape=(BLOCK_SIZE_Q, BLOCK_SIZE_D), |
|
order=(1, 0), |
|
) |
|
lse_ptrs = tl.make_block_ptr( |
|
base=lse_ptr + q_start * stride_ln + pid_h * stride_lh, |
|
shape=(q_len, 1), |
|
strides=(stride_ln, stride_lh), |
|
offsets=(pid_q * BLOCK_SIZE_Q, 0), |
|
block_shape=(BLOCK_SIZE_Q, 1), |
|
order=(0, 1), |
|
) |
|
|
|
q = tl.load(q_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
lse = tl.load(lse_ptrs, boundary_check=(0, 1), padding_option="zero") |
|
|
|
qk = tl.zeros((BLOCK_SIZE_Q, BLOCK_SIZE_K), dtype=tl.float32) |
|
qk += tl.dot(q, k) * qk_scale |
|
|
|
s += tl.where(causal_mask, tl.exp2(qk - lse), 0) |
|
|
|
s_ptrs = tl.make_block_ptr( |
|
base=s_ptr + pid_kh * stride_sh + q_start * stride_sq, |
|
shape=(q_len, k_len), |
|
strides=(stride_sq, stride_sk), |
|
offsets=(pid_q * BLOCK_SIZE_Q, pid_k * BLOCK_SIZE_K), |
|
block_shape=(BLOCK_SIZE_Q, BLOCK_SIZE_K), |
|
order=(1, 0), |
|
) |
|
tl.store(s_ptrs, s.to(s_ptr.dtype.element_ty), boundary_check=(0, 1)) |
|
|
|
|
|
def _get_attention_score( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
lse: torch.Tensor, |
|
kernel_size: int, |
|
kernel_stride: int, |
|
cu_seqlens_q: torch.Tensor, |
|
cu_seqlens_k: torch.Tensor, |
|
max_seqlen_q: int, |
|
max_seqlen_k: int, |
|
sm_scale: float, |
|
) -> torch.Tensor: |
|
|
|
assert q.dtype == torch.bfloat16 or q.dtype == torch.float16 |
|
assert q.dtype == k.dtype |
|
assert cu_seqlens_q.dtype == torch.int32 and cu_seqlens_k.dtype == torch.int32 |
|
assert ( |
|
lse.dtype == torch.float32 |
|
) |
|
|
|
q_len, num_q_heads, head_dim = q.shape |
|
k_len, num_k_heads, head_dim = k.shape |
|
batch_size = cu_seqlens_q.shape[0] - 1 |
|
assert q_len > k_len |
|
if sm_scale is None: |
|
sm_scale = 1 / math.sqrt(head_dim) |
|
|
|
assert num_q_heads % num_k_heads == 0 |
|
num_share_q_heads = num_q_heads // num_k_heads |
|
|
|
score = torch.zeros( |
|
num_k_heads, q_len, max_seqlen_k, dtype=torch.float32, device=q.device |
|
) |
|
|
|
grid = lambda META: ( |
|
batch_size * num_k_heads, |
|
triton.cdiv(max_seqlen_q, META["BLOCK_SIZE_Q"]), |
|
triton.cdiv(max_seqlen_k, META["BLOCK_SIZE_K"]), |
|
) |
|
BLOCK_SIZE_Q = 128 |
|
BLOCK_SIZE_K = 128 |
|
BLOCK_SIZE_D = triton.next_power_of_2(head_dim) |
|
score_kernel[grid]( |
|
q, |
|
k, |
|
lse, |
|
score, |
|
kernel_size, |
|
kernel_stride, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
num_k_heads, |
|
num_share_q_heads, |
|
head_dim, |
|
sm_scale, |
|
q.stride(0), |
|
q.stride(1), |
|
q.stride(2), |
|
k.stride(0), |
|
k.stride(1), |
|
k.stride(2), |
|
lse.stride(0), |
|
lse.stride(1), |
|
score.stride(0), |
|
score.stride(1), |
|
score.stride(2), |
|
BLOCK_SIZE_Q=BLOCK_SIZE_Q, |
|
BLOCK_SIZE_K=BLOCK_SIZE_K, |
|
BLOCK_SIZE_D=BLOCK_SIZE_D, |
|
num_warps=8, |
|
num_stages=3, |
|
) |
|
return score |
|
|
|
|
|
@triton.jit |
|
def _transform_score_kernel( |
|
s_ptr, |
|
bs_ptr, |
|
offs, |
|
cu_seqlens_q, |
|
|
|
num_heads, |
|
num_offs, |
|
max_k_len, |
|
max_blocks, |
|
pad_len, |
|
|
|
block_size, |
|
block_stride, |
|
init_blocks, |
|
local_blocks, |
|
|
|
stride_sh, |
|
stride_sq, |
|
stride_sk, |
|
stride_bsh, |
|
stride_bsq, |
|
stride_bsk, |
|
BLOCK_SIZE_Q: tl.constexpr, |
|
BLOCK_SIZE_K: tl.constexpr, |
|
BLOCK_SIZE_O: tl.constexpr, |
|
): |
|
pid_bh = tl.program_id(0) |
|
pid_b = pid_bh // num_heads |
|
pid_h = pid_bh % num_heads |
|
pid_q = tl.program_id(1) |
|
pid_k = tl.program_id(2) |
|
q_start = tl.load(cu_seqlens_q + pid_b) |
|
q_len = tl.load(cu_seqlens_q + pid_b + 1) - q_start |
|
k_start = pid_k * BLOCK_SIZE_K |
|
if pid_q * BLOCK_SIZE_Q >= q_len: |
|
return |
|
|
|
off_o = tl.arange(0, BLOCK_SIZE_O) |
|
w = tl.load(offs + off_o, mask=off_o < num_offs, other=0) |
|
|
|
off_q = pid_q * BLOCK_SIZE_Q + tl.arange(0, BLOCK_SIZE_Q) |
|
off_k = (k_start + tl.arange(0, BLOCK_SIZE_K)) * block_stride - pad_len |
|
off_k = off_k[None, :] + off_o[:, None] |
|
s_ptrs = ( |
|
s_ptr |
|
+ q_start * stride_sq |
|
+ pid_h * stride_sh |
|
+ off_q[:, None, None] * stride_sq |
|
+ off_k[None, :, :] * stride_sk |
|
) |
|
|
|
s = tl.load( |
|
s_ptrs, |
|
mask=(off_q < q_len)[:, None, None] & (off_k >= 0) & (off_k < max_k_len), |
|
other=0, |
|
) |
|
s = s * w[None, :, None] |
|
s = tl.max(s, axis=1) |
|
|
|
off_bq = off_q // block_size |
|
off_bk = tl.arange(0, BLOCK_SIZE_K) |
|
|
|
s = tl.where( |
|
|
|
(off_bq[:, None] >= (off_bk + k_start)[None, :]) & (off_bq[:, None] < (off_bk + k_start)[None, :] + local_blocks), |
|
float("-inf"), |
|
s, |
|
) |
|
|
|
|
|
s = tl.where( |
|
(off_bk[None, :] < init_blocks - k_start) |
|
|
|
| (off_bq[:, None] == (off_bk + k_start)[None, :]), |
|
float("inf"), |
|
s, |
|
) |
|
|
|
bs_ptrs = ( |
|
bs_ptr |
|
+ q_start * stride_bsq |
|
+ k_start * stride_bsk |
|
+ pid_h * stride_bsh |
|
+ off_q[:, None] * stride_bsq |
|
+ off_bk[None, :] * stride_bsk |
|
) |
|
tl.store( |
|
bs_ptrs, |
|
s, |
|
mask=(off_q < q_len)[:, None] & (off_bk < max_blocks - k_start)[None, :], |
|
) |
|
|
|
|
|
def transform_score( |
|
score: torch.Tensor, |
|
kernel_size: int, |
|
kernel_stride: int, |
|
block_size: int, |
|
cu_seqlens_q: torch.Tensor, |
|
cu_seqlens_k: torch.Tensor, |
|
max_seqlen_q: int, |
|
max_seqlen_k: int, |
|
init_blocks: int = 1, |
|
local_blocks: int = 2, |
|
) -> torch.Tensor: |
|
num_k_heads, total_query_len, max_key_len = score.shape |
|
batch_size = cu_seqlens_q.shape[0] - 1 |
|
pad_len = kernel_size // kernel_stride - 1 |
|
max_blocks = math.ceil(max_seqlen_q / block_size) |
|
block_score = torch.zeros( |
|
num_k_heads, |
|
total_query_len, |
|
max_blocks, |
|
dtype=torch.float32, |
|
device=score.device, |
|
) |
|
offs = ( |
|
torch.arange(kernel_size // kernel_stride, device=score.device)[:, None] |
|
+ torch.arange(block_size // kernel_stride, device=score.device)[None, :] |
|
).view(-1) |
|
offs = torch.histc(offs, bins=offs.max() + 1, min=0, max=offs.max()) |
|
num_offs = int(offs.shape[0]) |
|
BLOCK_SIZE_K = min(128, triton.next_power_of_2(max_blocks)) |
|
BLOCK_SIZE_O = triton.next_power_of_2(num_offs) |
|
BLOCK_SIZE_Q = 8 |
|
grid = ( |
|
num_k_heads * batch_size, |
|
triton.cdiv(total_query_len, BLOCK_SIZE_Q), |
|
triton.cdiv(max_blocks, BLOCK_SIZE_K), |
|
) |
|
_transform_score_kernel[grid]( |
|
score, |
|
block_score, |
|
torch.ones_like(offs, dtype=offs.dtype,device=offs.device), |
|
cu_seqlens_q, |
|
num_k_heads, |
|
offs.shape[0], |
|
max_key_len, |
|
max_blocks, |
|
pad_len, |
|
block_size, |
|
block_size // kernel_stride, |
|
init_blocks, |
|
local_blocks, |
|
score.stride(0), |
|
score.stride(1), |
|
score.stride(2), |
|
block_score.stride(0), |
|
block_score.stride(1), |
|
block_score.stride(2), |
|
BLOCK_SIZE_Q=BLOCK_SIZE_Q, |
|
BLOCK_SIZE_K=BLOCK_SIZE_K, |
|
BLOCK_SIZE_O=BLOCK_SIZE_O, |
|
num_warps=8, |
|
num_stages=3, |
|
) |
|
return block_score |
|
|
|
|
|
def compressed_attention( |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
kernel_size: int, |
|
kernel_stride: int, |
|
block_size: int, |
|
topk: int, |
|
cu_seqlens_q: torch.Tensor, |
|
cu_seqlens_k: torch.Tensor, |
|
max_seqlen_q: int, |
|
max_seqlen_k: int, |
|
sm_scale: float = None, |
|
init_blocks: int = 1, |
|
local_blocks: int = 2, |
|
parallel_topk_compute: Union[str, bool] = "auto", |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Attention between query and compressed key and value. Compute attention output and topk block idx used in topk_sparse_attention. |
|
|
|
Args: |
|
q (torch.Tensor): shape [total_q_len, num_q_heads, head_dim] |
|
k (torch.Tensor): shape [total_kv_len, num_kv_heads, head_dim] |
|
v (torch.Tensor): shape [total_kv_len, num_kv_heads, head_dim] |
|
kernel_size (int): kernel size in compress_key_value |
|
kernel_stride (int): stride of compress_key_value |
|
block_size (int): key value block size for topk sparse attention. |
|
topk (int): number of blocks for each query. |
|
cu_seqlens_q (torch.Tensor): shape [batch_size + 1], similar to cu_seqlens_q in flash_attn_func_varlen. |
|
cu_seqlens_k (torch.Tensor): shape [batch_size + 1], similar to cu_seqlens_k in flash_attn_func_varlen. |
|
max_seqlen_q (int): max q len of the batch. |
|
max_seqlen_k (int): max k len of the batch. |
|
sm_scale (float, optional): softmax scale. Defaults to None, means 1/sqrt(head_dim). |
|
init_blocks (int, optional): Number of init blocks for each query. Defaults to 1. |
|
local_blocks (int, optional): Number of local blocks for each query. Defaults to 2. |
|
parallel_topk_compute (str, optional): Only set it to False when the sequence length is too long. This can avoid a current bug. |
|
We'll fix this issue later. Defaults to auto, it will be set to False when the sequence length is greater than 32k and True otherwise. |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor]: attention output and topk_idx used in topk_sparse_attention |
|
""" |
|
if max_seqlen_q is None: |
|
max_seqlen_q = (cu_seqlens_q[1:] - cu_seqlens_q[:-1]).max().item() |
|
if max_seqlen_k is None: |
|
max_seqlen_k = (cu_seqlens_k[1:] - cu_seqlens_k[:-1]).max().item() |
|
attn_output, lse = CompressedAttention.apply( |
|
q, |
|
k, |
|
v, |
|
kernel_size, |
|
kernel_stride, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
max_seqlen_q, |
|
max_seqlen_k, |
|
sm_scale, |
|
) |
|
|
|
|
|
if topk <= 0: |
|
warnings.warn("topk <= 0, returned topk_idx will be None") |
|
return attn_output, None |
|
|
|
assert topk >= init_blocks |
|
with torch.no_grad(): |
|
num_k_heads, num_q_heads = k.shape[1], q.shape[1] |
|
num_shared_q_heads = num_q_heads // num_k_heads |
|
batch_size = cu_seqlens_q.shape[0] - 1 |
|
q_idx = torch.cat( |
|
[ |
|
torch.arange(cu_seqlens_q[i + 1] - cu_seqlens_q[i], device=q.device) |
|
for i in range(batch_size) |
|
], |
|
dim=0, |
|
) |
|
q_idx = q_idx // block_size |
|
|
|
if parallel_topk_compute == "auto": |
|
parallel_topk_compute = cu_seqlens_q[-1] <= 32768 |
|
|
|
if parallel_topk_compute: |
|
|
|
score = _get_attention_score( |
|
q, |
|
k, |
|
lse, |
|
kernel_size, |
|
kernel_stride, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
max_seqlen_q, |
|
max_seqlen_k, |
|
sm_scale, |
|
) |
|
|
|
score = transform_score( |
|
score, |
|
kernel_size, |
|
kernel_stride, |
|
block_size, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
max_seqlen_q, |
|
max_seqlen_k, |
|
init_blocks, |
|
local_blocks, |
|
) |
|
|
|
topk = min(topk, score.shape[-1]) |
|
topk_idx = score.topk(topk, dim=-1).indices.sort(-1).values |
|
|
|
|
|
topk_idx[topk_idx >= q_idx[None, :, None]] = -1 |
|
topk_idx = topk_idx.to(torch.int32) |
|
|
|
|
|
else: |
|
topk_idx_list = [] |
|
for h in range(num_k_heads): |
|
|
|
score = _get_attention_score( |
|
q[:, h * num_shared_q_heads : (h + 1) * num_shared_q_heads], |
|
k[:, h : h + 1], |
|
lse[h * num_shared_q_heads : (h + 1) * num_shared_q_heads], |
|
kernel_size, |
|
kernel_stride, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
max_seqlen_q, |
|
max_seqlen_k, |
|
sm_scale, |
|
) |
|
|
|
score = transform_score( |
|
score, |
|
kernel_size, |
|
kernel_stride, |
|
block_size, |
|
cu_seqlens_q, |
|
cu_seqlens_k, |
|
max_seqlen_q, |
|
max_seqlen_k, |
|
init_blocks, |
|
local_blocks, |
|
) |
|
|
|
topk = min(topk, score.shape[-1]) |
|
topk_idx = score.topk(topk, dim=-1).indices.sort(-1).values |
|
topk_idx[topk_idx >= q_idx[None, :, None]] = -1 |
|
topk_idx = topk_idx.to(torch.int32) |
|
topk_idx_list.append(topk_idx) |
|
topk_idx = torch.cat(topk_idx_list, dim=0) |
|
return attn_output, topk_idx |
|
|