# coding=utf-8 # Copyright 2025 The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch MiniCPM model.""" import math import warnings from typing import Any, List, Optional, Tuple, Union, Dict from einops import rearrange, einsum import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn, tensor from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.cache_utils import Cache,DynamicCache from transformers.modeling_attn_mask_utils import ( AttentionMaskConverter, _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, ) from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13 from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from transformers.utils.import_utils import is_torch_fx_available from .configuration_minicpm import MiniCPMConfig import re try: from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa except: pass #! nsa #! debug token debug_token=3 token_now =0 save_no_cache =False save_cache=False from functools import lru_cache from .compressed_attention import compressed_attention from block_sparse_attn import ( block_sparse_attn_func,block_sparse_attn_kvcache_func ) def prepare_fa2_from_position_ids(query, key, value, position_ids): """ This function returns necessary arguments to call `flash_attn_varlen_func`. All three query, key, value states will be flattened. Cumulative lengths of each examples in the batch will be extracted from position_ids. NOTE: ideally cumulative lengths should be prepared at the data collator stage Arguments: query (`torch.Tensor`): Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim). key (`torch.Tensor`): Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). value (`torch.Tensor`): Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim). position_ids (`torch.Tensor`): Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. Return: query (`torch.Tensor`): Query state without padding. Shape: (total_target_length, num_heads, head_dim). key (`torch.Tensor`): Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). value (`torch.Tensor`): Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim). indices_q (`torch.Tensor`): The indices of non-masked tokens from the flattened input target sequence. (cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`): The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). (max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`): Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value). """ query = query.view(-1, query.size(-2), query.size(-1)) key = key.contiguous().view(-1, key.size(-2), key.size(-1)) value = value.contiguous().view(-1, value.size(-2), value.size(-1)) position_ids = position_ids.flatten() indices_q = torch.arange(position_ids.size(0), device=position_ids.device, dtype=torch.int32) cu_seq_lens = torch.cat( ( indices_q[position_ids == 0], torch.tensor(position_ids.size(), device=position_ids.device, dtype=torch.int32), ) ) max_length = position_ids.max() + 1 return (query, key, value, indices_q, (cu_seq_lens, cu_seq_lens), (max_length, max_length)) def convert_topk_to_base_blockmask( topk_idx: torch.Tensor, max_seqlen_k: int, block_size: int, device: str = "cuda" ) -> torch.Tensor: """ 将topk索引转换为块稀疏注意力掩码,仅处理-1的情况 Args: topk_idx: 形状 [num_heads, total_seqlen, k] 的块索引张量 cu_seqlens_q: 累积序列长度(用于计算总长度) max_seqlen_k: 最大键序列长度(用于计算键块数量) block_size: block_size device: 输出设备 Returns: mask: 布尔掩码,形状 [num_heads, total_seqlen, k_blocks] """ # 计算键块数量 k_blocks = (max_seqlen_k + block_size - 1) // block_size # 向上取整 num_heads, total_seqlen, k = topk_idx.shape # 初始化全False掩码 mask = torch.zeros(num_heads, total_seqlen, k_blocks, dtype=torch.bool, device=device) # 过滤掉 -1,确保索引合法 valid_idx = topk_idx[topk_idx != -1] # 生成索引掩码 batch_idx, seq_idx, _ = torch.where(topk_idx != -1) # 找到非-1索引的 (head, seq) 位置 mask[batch_idx, seq_idx, valid_idx] = True # 设置对应位置为 True return mask @lru_cache(maxsize=16) def calc_chunks_with_stride(cu_seqlen, moba_chunk_size, kernel_stride): """ 计算需要 MOBA 注意力的 chunks,支持 stride。 返回: - filtered_indices: 用于直接索引 kv 的索引。 - cu_seqlens_compressed: 压缩后的累积序列长度。 """ # 1. 计算每个序列的长度 batch_sizes = cu_seqlen[1:] - cu_seqlen[:-1] # 2. 计算每个序列的 chunk 起始位置 (考虑 stride) max_seq_len = torch.max(batch_sizes) max_num_chunks_per_seq = (max_seq_len - moba_chunk_size) // kernel_stride + 1 # 修正公式 chunk_start_offsets = torch.arange(0, max_num_chunks_per_seq * kernel_stride, kernel_stride, device=cu_seqlen.device) seq_starts = cu_seqlen[:-1] chunk_start_in_seq = seq_starts[:, None] + chunk_start_offsets[None, :] # [batch_size, max_num_chunks_per_seq] # 3. 过滤掉超出序列长度的 chunk 和非完整大小的 chunk chunk_end_in_seq = chunk_start_in_seq + moba_chunk_size valid_chunk_mask = (chunk_end_in_seq <= (seq_starts[:, None] + batch_sizes[:, None])) # 完整 chunk # 4. 根据 valid_chunk_mask 过滤有效的 chunk 起始位置 valid_chunk_starts = chunk_start_in_seq[valid_chunk_mask] # [num_valid_chunks] del chunk_start_in_seq # 5. 生成 filtered_indices chunk_indices = torch.arange( 0, moba_chunk_size, device=cu_seqlen.device )[None, :] # [1, moba_chunk_size] filtered_indices = valid_chunk_starts[:, None] + chunk_indices # [num_valid_chunks, moba_chunk_size] filtered_indices = filtered_indices.view(-1) # 展平为一维索引 # 6. 计算压缩后的累积序列长度 num_filtered_chunks_per_batch = valid_chunk_mask.sum(dim=1) # 每个 batch 的有效 chunk 数量 cu_seqlens_compressed = torch.zeros( len(cu_seqlen), dtype=torch.int32, device=cu_seqlen.device ) cu_seqlens_compressed[1:] = num_filtered_chunks_per_batch.cumsum(dim=0) del num_filtered_chunks_per_batch, chunk_start_offsets, seq_starts, chunk_end_in_seq, valid_chunk_mask, chunk_indices return filtered_indices, cu_seqlens_compressed class CompressKV(torch.nn.Module): def __init__(self, head_num_k, head_dim, kernel_size, compress_func, add_pos_embed=False, kernel_stride=16): """ 压缩KV模块,支持多种压缩方式 Args: head_num_k: KV头的数量 head_dim: 每个头的维度 kernel_size: 每个chunk的大小 compress_func: 压缩方式(如meanpool, mlp, conv1d等) add_pos_embed: 是否添加位置编码 stride: 分块时的步长 """ super().__init__() self.kernel_size = kernel_size self.compress_func = compress_func self.head_num_k = head_num_k self.head_dim = head_dim self.kernel_stride = kernel_stride # 新增stride参数 # 定义不同的压缩方式 if compress_func == 'mlp' or compress_func == 'mlp+residual': self.kv_compress = nn.Sequential( nn.Linear(kernel_size * 2, kernel_size * 4), nn.ReLU(), nn.Linear(kernel_size * 4, 2) ) elif compress_func == 'conv1d': self.k_conv = nn.Conv1d(in_channels=self.head_dim, out_channels=self.head_dim, kernel_size=kernel_size) self.v_conv = nn.Conv1d(in_channels=self.head_dim, out_channels=self.head_dim, kernel_size=kernel_size) elif compress_func == 'weighted_sum': self.weight_net_v = nn.Linear(self.head_dim, 1) self.weight_net_k = nn.Linear(self.head_dim, 1) elif compress_func == 'weighted_sum+proj': self.weight_net_v = nn.Linear(self.head_dim, 1) self.weight_net_k = nn.Linear(self.head_dim, 1) self.k_proj = nn.Linear(self.head_dim, self.head_dim) self.v_proj = nn.Linear(self.head_dim, self.head_dim) if add_pos_embed: # 修改位置编码层:为每个头创建独立的位置编码 self.pos_embed = nn.Embedding( kernel_size, head_num_k * head_dim # 维度扩展为 [kernel_size, num_heads * head_dim] ) else: self.pos_embed = None def forward(self, kv: torch.Tensor, cu_seqlens): """ 前向传播,压缩KV Args: kv: 输入的KV张量 cu_seqlens: 累积序列长度 Returns: compress_k: 压缩后的K compress_v: 压缩后的V cu_seqlens_compressed: 压缩后的累积序列长度 """ # 计算chunk相关信息,支持stride filtered_kv_indices, cu_seqlens_compressed = calc_chunks_with_stride( cu_seqlens, self.kernel_size, self.kernel_stride ) # 提取过滤后的kv filtered_kv = kv.index_select(0, filtered_kv_indices.view(-1)) # 分块 filtered_kv = filtered_kv.view( filtered_kv.shape[0]// self.kernel_size, self.kernel_size, 2, self.head_num_k, self.head_dim) #[l, block_size,2,h,d] if self.pos_embed is not None: positions = torch.arange(self.kernel_size, device=kv.device) pos_emb = self.pos_embed(positions) # [kernel_size, num_heads * head_dim] # 重塑形状以匹配多头结构 pos_emb = pos_emb.view( self.kernel_size, self.head_num_k, # 使用实际头数参数(需在__init__中保存) self.head_dim ) # [kernel_size, num_heads, head_dim] # 添加维度用于广播 pos_emb = pos_emb.reshape(1,self.kernel_size,1, self.head_num_k, self.head_dim) # [1, block_size, 1, num_heads, head_dim] filtered_kv = filtered_kv + pos_emb if self.compress_func == "meanpool": compressed_kv = filtered_kv.mean(dim=1) compress_k = compressed_kv[:, 0, :, :]#.reshape(-1, self.head_num_k, self.head_dim) compress_v = compressed_kv[:, 1, :, :]#.reshape(-1, self.head_num_k, self.head_dim) elif self.compress_func == "mlp": filtered_kv = filtered_kv.permute(0, 3,4,2, 1).reshape(filtered_kv.shape[0], self.head_num_k, self.head_dim,-1) compressed_kv = self.kv_compress(filtered_kv) compress_k = compressed_kv[:, :, :, 0]#.reshape(-1, self.head_num_k, self.head_dim) compress_v = compressed_kv[:, :, :, 1]#.reshape(-1, self.head_num_k, self.head_dim) elif self.compress_func == "mlp+residual": mean_kv = filtered_kv.mean(dim=1) mlp_kv = self.kv_compress(filtered_kv.permute(0, 3,4,2, 1).reshape(filtered_kv.shape[0], self.head_num_k, self.head_dim,-1)).permute(0, 3,1,2) #[l, h,d,2]->[l,2,h,d] compressed_kv = mean_kv + mlp_kv compress_k = compressed_kv[:, 0, :, :] compress_v = compressed_kv[:, 1, :, :] elif self.compress_func == 'conv1d': k = filtered_kv[:,: ,0,:, :] k = rearrange(k, 'l block_size h d -> (l h) d block_size') #只能3维 v = filtered_kv[:,: ,1,:, :] v = rearrange(v, 'l block_size h d -> (l h) d block_size') compress_k = self.k_conv(k).squeeze(-1) # [(l h), d] compress_v = self.v_conv(v).squeeze(-1) # [(l h), d] compress_k = rearrange(compress_k, '(l h) d -> l h d', h=self.head_num_k) compress_v = rearrange(compress_v, '(l h) d -> l h d', h=self.head_num_k) elif self.compress_func == 'weighted_sum': k = filtered_kv[:,: ,0,:, :] k = rearrange(k, 'l block_size h d -> l h block_size d') v = filtered_kv[:,: ,1,:, :] v = rearrange(v, 'l block_size h d -> l h block_size d') weight_k = torch.softmax(self.weight_net_k(k), dim=2) # [l, h, block_size, 1] weight_v = torch.softmax(self.weight_net_v(v), dim=2) # [l, h, block_size, 1] compress_k = (weight_k * k).sum(dim=2) # [l, h, d] compress_v = (weight_v * v).sum(dim=2) # [l, h, d] elif self.compress_func == 'weighted_sum+proj': k = filtered_kv[:,: ,0,:, :] k = rearrange(k, 'l block_size h d -> l h block_size d') v = filtered_kv[:,: ,1,:, :] v = rearrange(v, 'l block_size h d -> l h block_size d') weight_k = torch.softmax(self.weight_net_k(k), dim=2) # [l, h, block_size, 1] weight_v = torch.softmax(self.weight_net_v(v), dim=2) # [l, h, block_size, 1] compress_k = (weight_k * self.k_proj(k)).sum(dim=2) # [l, h, d] compress_v = (weight_v * self.v_proj(v)).sum(dim=2) # [l, h, d] else: raise ValueError(f"Unsupported compress type: {self.compress_func}") del filtered_kv if 'compressed_kv' in locals(): del compressed_kv return compress_k, compress_v, cu_seqlens_compressed class DynamicCacheQKV(DynamicCache): """ A cache that grows dynamically as more tokens are generated. This is the default for generative models. It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is `[batch_size, num_heads, seq_len, head_dim]`. Example: ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache >>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct") >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct") >>> inputs = tokenizer(text="My name is Qwen2", return_tensors="pt") >>> # Prepare a cache class and pass it to model's forward >>> past_key_values = DynamicCache() >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True) >>> outputs.past_key_values # access cache filled with key/values from generation DynamicCache() ``` """ def __init__(self, num_hidden_layers: Optional[int] = None) -> None: super().__init__() if num_hidden_layers is None: self.key_cache: List[torch.Tensor] = [] self.value_cache: List[torch.Tensor] = [] self.query_cache: List[torch.Tensor] = [] else: self.key_cache: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)] self.value_cache: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)] self.query_cache: List[torch.Tensor] = [[] for _ in range(num_hidden_layers)] self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]: """ Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the sequence length. """ if layer_idx < len(self): return (self.key_cache[layer_idx], self.value_cache[layer_idx],self.query_cache[layer_idx]) else: raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}") def __iter__(self): """ Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over keys and values """ for layer_idx in range(len(self)): yield (self.key_cache[layer_idx], self.value_cache[layer_idx],self.query_cache[layer_idx]) def __len__(self): """ Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds to the number of layers in the model. """ return len(self.key_cache) def update( self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int, cache_kwargs: Optional[Dict[str, Any]] = None,query_states: torch.Tensor=None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`. Parameters: key_states (`torch.Tensor`): The new key states to cache. value_states (`torch.Tensor`): The new value states to cache. layer_idx (`int`): The index of the layer to cache the states for. cache_kwargs (`Dict[str, Any]`, `optional`): Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`. Return: A tuple containing the updated key and value states. """ # Update the number of seen tokens if layer_idx == 0: self._seen_tokens += key_states.shape[-2] if query_states is None: raise ValueError("query_states must be provided for DynamicCacheQKV") # Update the cache if len(self.key_cache) <= layer_idx: self.key_cache.append(key_states) self.value_cache.append(value_states) self.query_cache.append(query_states) # content on layer cache can be a tensor and checking not tensor causes errors # so we explicitly check for the empty list elif self.key_cache[layer_idx] == []: self.key_cache[layer_idx] = key_states self.value_cache[layer_idx] = value_states self.query_cache[layer_idx] = query_states else: self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2) self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2) self.query_cache[layer_idx] = torch.cat([self.query_cache[layer_idx], query_states], dim=-2) return self.key_cache[layer_idx], self.value_cache[layer_idx], self.query_cache[layer_idx] def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: """Returns the sequence length of the cached states. A layer index can be optionally passed.""" # TODO: deprecate this function in favor of `cache_position` if len(self.key_cache) <= layer_idx or (len(self.key_cache) > layer_idx and self.key_cache[layer_idx] == []): return 0 return self.key_cache[layer_idx].shape[-2] def get_max_length(self) -> Optional[int]: """Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length.""" return None def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]: """Converts the `DynamicCache` instance into the its equivalent in the legacy cache format. Used for backward compatibility.""" legacy_cache = () for layer_idx in range(len(self)): legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),) return legacy_cache # @classmethod # def from_legacy_cache( # cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, num_hidden_layers: int = None # ) -> "DynamicCacheQKV": # """Converts a cache in the legacy cache format into an equivalent `DynamicCache`. Used for # backward compatibility.""" # cache = cls(num_hidden_layers) # if past_key_values is not None: # for layer_idx in range(len(past_key_values)): # key_states, value_states, query_status = past_key_values[layer_idx] # cache.update(key_states, value_states, query_status,layer_idx) # return cache def crop(self, max_length: int): """Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be negative to remove `max_length` tokens. This is used in assisted decoding and contrastive search.""" # In case it is negative if max_length < 0: max_length = self.get_seq_length() - abs(max_length) if self.get_seq_length() <= max_length: return self._seen_tokens = max_length for idx in range(len(self.key_cache)): if self.key_cache[idx] != []: self.key_cache[idx] = self.key_cache[idx][..., :max_length, :] self.value_cache[idx] = self.value_cache[idx][..., :max_length, :] self.query_cache[idx] = self.query_cache[idx][..., :max_length, :] def batch_split(self, full_batch_size: int, split_size: int, num_hidden_layers: int) -> List["DynamicCacheQKV"]: """Split the current instance into a list of `DynamicCache` by the batch size. This will be used by `_split_model_inputs()` in `generation.utils`""" out = [] for i in range(0, full_batch_size, split_size): current_split = DynamicCacheQKV(num_hidden_layers) current_split._seen_tokens = self._seen_tokens current_split.key_cache = [tensor[i : i + split_size] for tensor in self.key_cache] current_split.value_cache = [tensor[i : i + split_size] for tensor in self.value_cache] current_split.query_cache = [tensor[i : i + split_size] for tensor in self.query_cache] out.append(current_split) return out @classmethod def from_batch_splits(cls, splits: List["DynamicCacheQKV"], num_hidden_layers: int) -> "DynamicCacheQKV": """This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in `generation.utils`""" cache = cls(num_hidden_layers) for idx in range(len(splits[0])): key_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []] value_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []] query_cache = [current.key_cache[idx] for current in splits if current.key_cache[idx] != []] if key_cache != []: layer_keys = torch.cat(key_cache, dim=0) layer_values = torch.cat(value_cache, dim=0) layer_query = torch.cat(query_cache, dim=0) cache.update(layer_keys, layer_values, idx,query_states=layer_query) return cache def batch_repeat_interleave(self, repeats: int): """Repeat the cache `repeats` times in the batch dimension. Used in contrastive search.""" for layer_idx in range(len(self)): self.key_cache[layer_idx] = self.key_cache[layer_idx].repeat_interleave(repeats, dim=0) self.value_cache[layer_idx] = self.value_cache[layer_idx].repeat_interleave(repeats, dim=0) self.query_cache[layer_idx] = self.query_cache[layer_idx].repeat_interleave(repeats, dim=0) def batch_select_indices(self, indices: torch.Tensor): """Only keep the `indices` in the batch dimension of the cache. Used in contrastive search.""" for layer_idx in range(len(self)): self.key_cache[layer_idx] = self.key_cache[layer_idx][indices, ...] self.value_cache[layer_idx] = self.value_cache[layer_idx][indices, ...] self.query_cache[layer_idx] = self.query_cache[layer_idx][indices, ...] #! nsa # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. # It means that the function will not be traced through and simply appear as a node in the graph. if is_torch_fx_available(): if not is_torch_greater_or_equal_than_1_13: import torch.fx _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MiniCPMConfig" def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): warnings.warn( "Calling `transformers.models.minicpm.modeling_minicpm._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask" ) return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 ): warnings.warn( "Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask" ) return AttentionMaskConverter._make_causal_mask( input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length ) # @torch.jit.script # type: ignore def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float): old_dtype = hidden.dtype variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True) hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype) return hidden * weight class MiniCPMRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ MiniCPMRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): return rms_layernorm(hidden_states, self.weight, self.variance_epsilon) ALL_LAYERNORM_LAYERS.append(MiniCPMRMSNorm) class MiniCPMRotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): super().__init__() self.dim = dim self.max_position_embeddings = max_position_embeddings self.base = base inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) # Build here to make `torch.jit.trace` work. self._set_cos_sin_cache( # seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32 ) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def forward(self, x, seq_len=None): # x: [bs, num_attention_heads, seq_len, head_size] if seq_len > self.max_seq_len_cached: self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) return ( self.cos_cached[:seq_len].to(dtype=x.dtype), self.sin_cached[:seq_len].to(dtype=x.dtype), ) class MiniCPMLongRoPE(MiniCPMRotaryEmbedding): """MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, short_factor=None, long_factor=None, original_max_position_embeddings=None): self.short_factor = short_factor self.long_factor = long_factor self.original_max_position_embeddings = original_max_position_embeddings scale = (max_position_embeddings / self.original_max_position_embeddings) self.scaling_factor = math.sqrt( 1 + math.log(scale) / math.log(self.original_max_position_embeddings)) super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) if seq_len > self.original_max_position_embeddings: ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=device) else: ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=device) freqs = torch.mul( torch.outer(t, 1.0 / ext_factors).to(device=device), self.inv_freq.to(device=device).to(dtype) ) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype) * self.scaling_factor, persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype) * self.scaling_factor, persistent=False) class MiniCPMLinearScalingRotaryEmbedding(MiniCPMRotaryEmbedding): """MiniCPMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) t = t / self.scaling_factor freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding): """MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): self.scaling_factor = scaling_factor super().__init__(dim, max_position_embeddings, base, device) def _set_cos_sin_cache(self, seq_len, device, dtype): self.max_seq_len_cached = seq_len if seq_len > self.max_position_embeddings: base = self.base * ( (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) ) ** (self.dim / (self.dim - 2)) inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) freqs = torch.outer(t, self.inv_freq) # Different from paper, but it uses a different permutation in order to obtain the same calculation emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ # cos = cos[position_ids].unsqueeze(unsqueeze_dim) # sin = sin[position_ids].unsqueeze(unsqueeze_dim) # q_embed = (q * cos) + (rotate_half(q) * sin) # k_embed = (k * cos) + (rotate_half(k) * sin) orig_dtype = k.dtype cos = cos[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim] sin = sin[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim] q_fp32 = q.to(dtype=torch.float32, device=q.device) k_fp32 = k.to(dtype=torch.float32, device=k.device) q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin) k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin) return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype) class MiniCPMMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): if self.config.pretraining_tp > 1: slice = self.intermediate_size // self.config.pretraining_tp gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) up_proj_slices = self.up_proj.weight.split(slice, dim=0) down_proj_slices = self.down_proj.weight.split(slice, dim=1) gate_proj = torch.cat( [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1 ) up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1) intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) down_proj = [ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp) ] down_proj = sum(down_proj) else: down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class MiniCPMAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: MiniCPMConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.attention_dropout = config.attention_dropout self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.max_position_embeddings = config.max_position_embeddings self.rope_theta = config.rope_theta self.is_causal = True if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) self._init_rope() def _init_rope(self): if self.config.rope_scaling is None: self.rotary_emb = MiniCPMRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, base=self.rope_theta, ) else: scaling_type = self.config.rope_scaling["rope_type"] scaling_factor = self.config.rope_scaling.get("factor", None) if scaling_type == "linear": self.rotary_emb = MiniCPMLinearScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "dynamic": self.rotary_emb = MiniCPMDynamicNTKScalingRotaryEmbedding( self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor, base=self.rope_theta, ) elif scaling_type == "longrope": self.rotary_emb = MiniCPMLongRoPE( self.head_dim, max_position_embeddings=self.max_position_embeddings, short_factor = self.config.rope_scaling["short_factor"], long_factor = self.config.rope_scaling["long_factor"], base=self.rope_theta, original_max_position_embeddings=self.config.rope_scaling["original_max_position_embeddings"] ) else: raise ValueError(f"Unknown RoPE scaling type {scaling_type}") def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) bsz, q_len, _ = hidden_states.size() if self.config.pretraining_tp > 1: key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp query_slices = self.q_proj.weight.split( (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0 ) key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)] query_states = torch.cat(query_states, dim=-1) key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)] key_states = torch.cat(key_states, dim=-1) value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)] value_states = torch.cat(value_states, dim=-1) else: query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: raise ValueError( f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): raise ValueError( f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) if self.config.pretraining_tp > 1: attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2) o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1) attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)]) else: attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value class MiniCPMFlashAttention2(MiniCPMAttention): """ MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() #! -------nsa------- self.kernel_size = 32 self.kernel_stride = 16 compress_type = 'meanpool' self.init_blocks=1 self.block_size=64 self.window_size=2048 self.local_blocks = self.window_size // self.block_size; #local_blocks self.topk = 32 self.compress_kv = CompressKV(self.num_key_value_heads, self.head_dim,compress_func= compress_type, kernel_size=self.kernel_size,kernel_stride=self.kernel_stride, add_pos_embed=False) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # MiniCPMFlashAttention2 attention does not support output_attentions if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) # overwrite attention_mask with padding_mask attention_mask = kwargs.pop("padding_mask") output_attentions = False bsz, q_len, _ = hidden_states.size() # assert bsz == 1, '现在只支持batch_size=1' query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len) # if key_states.shape[-2] == 1: #这里是possition ids的问题 # position_ids = torch.tensor([[kv_seq_len-1]], device=key_states.device, dtype=position_ids.dtype) # # breakpoint() query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models new_k = key_states new_v = value_states new_q = query_states try: past_k , past_v, past_q = past_key_value.__getitem__(self.layer_idx) except Exception as e: # If the cache is empty, we need to create a new one past_k , past_v, past_q = key_states, value_states, query_states new_k, new_v = None, None key_states, value_states ,query_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs,query_states=query_states) # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache # to be able to avoid many of these transpose/reshape/view. query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) dropout_rate = self.attention_dropout if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (MiniCPMRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: # Handle the case where the model is quantized if hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) if past_key_value is None or new_k is None: attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, position_ids, q_len, dropout=dropout_rate,original_hidden_states=hidden_states,) else: # breakpoint() attn_output = self._flash_attention_forward_with_kv_cache( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate,original_hidden_states=hidden_states,past_k=past_k,past_v=past_v,new_k=new_k,new_v=new_v,new_q=new_q) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, position_ids, query_length, dropout=0.0, softmax_scale=None,original_hidden_states=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`int`, *optional*): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) original_hidden_states = self._unpad_hidden_states(original_hidden_states, indices_q) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = self.nsa_forward( query_states, key_states, value_states, cu_seqlens_q, cu_seqlens_k , max_seqlen_in_batch_q, max_seqlen_in_batch_k, original_hidden_states=original_hidden_states ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) elif attention_mask is None and position_ids is not None: batch_size = query_states.size(0) query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = ( prepare_fa2_from_position_ids(query_states, key_states, value_states, position_ids) ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = self.nsa_forward( query_states, key_states, value_states, cu_seqlens_q, cu_seqlens_k , max_seqlen_in_batch_q, max_seqlen_in_batch_k, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: raise ValueError return attn_output def _flash_attention_forward_with_kv_cache( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None,original_hidden_states=None,past_k=None,past_v=None,new_k=None,new_v=None,new_q=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`int`, *optional*): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: query_length = query_states.shape[1] batch_size = query_states.shape[0] # query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( # query_states, key_states, value_states, attention_mask, query_length=query_length # ) #! 这里的attention_mask是没有包括最后一个,所以不准 assert batch_size == 1, '现在只支持batch_size=1' query_states = query_states.squeeze(0) key_states = key_states.squeeze(0) value_states = value_states.squeeze(0) original_hidden_states = original_hidden_states.squeeze(0) cu_seqlens_q=cu_seqlens_k = tensor([0, query_length], device=query_states.device, dtype=torch.int32) max_seqlen_in_batch_q=max_seqlen_in_batch_k = query_length attn_output = self.nsa_forward_with_kv_cache( query_states, key_states, value_states, cu_seqlens_q, cu_seqlens_k , max_seqlen_in_batch_q, max_seqlen_in_batch_k, original_hidden_states=original_hidden_states,past_k=past_k,past_v=past_v,new_k=new_k,new_v=new_v,new_q=new_q, batch_size=batch_size ) # attn_output_unpad = flash_attn_varlen_func( # query_states, # key_states, # value_states, # cu_seqlens_q=cu_seqlens_q, # cu_seqlens_k=cu_seqlens_k, # max_seqlen_q=max_seqlen_in_batch_q, # max_seqlen_k=max_seqlen_in_batch_k, # dropout_p=dropout, # softmax_scale=softmax_scale, # causal=causal, # ) # attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal ) return attn_output #! -------nsa------- def nsa_forward(self, query_layer, key_layer, value_layer, cu_seqlens_q, cu_seqlens_k , max_seqlen_in_batch_q, max_seqlen_in_batch_k, original_hidden_states=None ): kv = torch.stack((key_layer, value_layer), dim=1) compressed_k,compressed_v, compressed_cu_seqlens = self.compress_kv(kv, cu_seqlens_k) compressed_seqlens = compressed_cu_seqlens[1:] - \ compressed_cu_seqlens[:-1] compressed_attn_output, topk_idx = compressed_attention( query_layer, compressed_k, compressed_v, self.kernel_size, self.kernel_stride, self.block_size, self.topk, cu_seqlens_q, compressed_cu_seqlens, max_seqlen_in_batch_q, compressed_seqlens.max().item(), None, init_blocks=self.init_blocks, local_blocks=self.local_blocks, ) del compressed_k, compressed_v, compressed_cu_seqlens, kv, compressed_seqlens nheads_k = key_layer.shape[1] head_mask_type = torch.tensor([1] * nheads_k, device=query_layer.device, dtype=torch.int32) streaming_info = torch.tensor([0, 0] * nheads_k, device=query_layer.device, dtype=torch.int32) exact_streaming =False repeat_times = 1 if repeat_times > 1: query_layer_repeat = query_layer.repeat_interleave(repeat_times, dim=-2) else: query_layer_repeat = query_layer topk_attn_output = block_sparse_attn_func( query_layer_repeat, key_layer, value_layer, cu_seqlens_q, cu_seqlens_k, head_mask_type, streaming_info, topk_idx, max_seqlen_in_batch_q, max_seqlen_in_batch_k, self.attention_dropout, deterministic=False, softmax_scale=None, is_causal=True, exact_streaming=False, return_attn_probs=False, block_window_size=self.window_size // self.block_size, use_checkpoint=False, ) # import pdb; pdb.set_trace() # raise ValueError('debug') if repeat_times > 1: topk_attn_output = topk_attn_output.view(topk_attn_output.shape[0],topk_attn_output.shape[1]//repeat_times,repeat_times,-1).mean(dim=-2) return topk_attn_output #! -------nsa------- def nsa_forward_with_kv_cache(self, query_layer, key_layer, value_layer, cu_seqlens_q, cu_seqlens_k , max_seqlen_in_batch_q, max_seqlen_in_batch_k, original_hidden_states=None,past_k=None,past_v=None,new_k=None,new_v=None,new_q=None, batch_size=None, ): # breakpoint() kv = torch.stack((key_layer, value_layer), dim=1) compressed_k,compressed_v, compressed_cu_seqlens = self.compress_kv(kv, cu_seqlens_k) compressed_seqlens = compressed_cu_seqlens[1:] - \ compressed_cu_seqlens[:-1] compressed_attn_output, topk_idx = compressed_attention( query_layer, compressed_k, compressed_v, self.kernel_size, self.kernel_stride, self.block_size, self.topk, cu_seqlens_q, compressed_cu_seqlens, max_seqlen_in_batch_q, compressed_seqlens.max().item(), None, init_blocks=self.init_blocks, local_blocks=self.local_blocks, ) compressed_attn_output = compressed_attn_output[-1].unsqueeze(0).unsqueeze(0) del compressed_k, compressed_v, compressed_cu_seqlens, kv, compressed_seqlens nheads_k = key_layer.shape[1] head_mask_type = torch.tensor([1] * nheads_k, device=query_layer.device, dtype=torch.int32) streaming_info = torch.tensor([0, 0] * nheads_k, device=query_layer.device, dtype=torch.int32) exact_streaming =False repeat_times = 1 past_k = past_k.transpose(1, 2).contiguous() past_v = past_v.transpose(1, 2).contiguous() if new_k is not None: new_k = new_k.transpose(1, 2).contiguous() if new_v is not None: new_v = new_v.transpose(1, 2).contiguous() new_q = new_q.transpose(1, 2).contiguous() if repeat_times > 1: new_q = new_q.repeat_interleave(repeat_times, dim=-2) else: new_q = new_q #! 暂时 # assert batch_size == 1, '只支持batch_size =1' cache_batch_idx = torch.arange(batch_size, device=query_layer.device, dtype=torch.int32) current_seqlens_k = cu_seqlens_k[1:] - cu_seqlens_k[:-1] new_topk_idx = [] if new_k is not None: for i in range(batch_size): new_topk_idx.append(topk_idx[:,current_seqlens_k[i]-1,:].unsqueeze(1)) topk_idx = torch.stack(new_topk_idx, dim=0) else: # prefilling for i in range(batch_size): if i == 0: start = 0 else: start = current_seqlens_k[i-1] new_topk_idx.append(topk_idx[:,start:current_seqlens_k[i],:]) topk_idx = torch.stack(new_topk_idx, dim=0) seqlen_k=key_layer.shape[0] #! 只考虑单个batch seqlens_k = torch.full((batch_size,), seqlen_k - 1, dtype=torch.int32, device=new_q.device) past_k = torch.cat([past_k, torch.zeros_like(new_k,dtype=new_k.dtype)], dim=1) #填充多一个 past_v = torch.cat([past_v, torch.zeros_like(new_v,dtype=new_v.dtype)], dim=1) #填充多一个 topk_attn_output, softmax_lse = block_sparse_attn_kvcache_func( q=new_q, # [batch_size, seqlen_q, nheads, d] k_cache=past_k, # [batch_size, max_seqlen_k, nheads_k, d] v_cache=past_v, # [batch_size, max_seqlen_k, nheads_k, d] m_block_dim=16, n_block_dim=64, head_mask_type=head_mask_type, streaming_info=None,#streaming_info, topk_idx=topk_idx, k=new_k, # [batch_size, 1, nheads_k, d] v=new_v, # [batch_size, 1, nheads_k, d] seqlens_k= seqlens_k,#current_seqlens_k-1 ,#! 这边要对齐kv cahce的长度, # Current positions in cache rotary_cos=None, # No rotary embeddings rotary_sin=None, # No rotary embeddings cache_batch_idx=cache_batch_idx, alibi_slopes=None, softmax_scale=None, causal=False, # Renaming to match function signature exact_streaming=exact_streaming, window_size_left=-1, # Using individual parameters instead of tuple window_size_right=-1, block_window_size=self.window_size // self.block_size, rotary_interleaved=False, num_splits=16, # num_topk=self.topk, ) if repeat_times > 1: topk_attn_output = topk_attn_output.view(topk_attn_output.shape[0],topk_attn_output.shape[1],topk_attn_output.shape[2]//repeat_times,repeat_times,-1).mean(dim=-2) return topk_attn_output def _unpad_hidden_states(self, hidden_states,indices): # Unpad the hidden states using the indices batch_size, seq_len, hidden_dim = hidden_states.shape if seq_len ==1: return hidden_states.reshape(batch_size , -1, self.head_dim) hidden_states = index_first_axis( hidden_states.reshape(batch_size * seq_len, -1, self.head_dim), indices ) return hidden_states def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) class MiniCPMSdpaAttention(MiniCPMAttention): """ MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `MiniCPMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from MiniCPMAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "MiniCPMModel is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" ) # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.attention_dropout if self.training else 0.0, # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal=self.is_causal and attention_mask is None and q_len > 1, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value MINICPM_ATTENTION_CLASSES = { "eager": MiniCPMAttention, "flash_attention_2": MiniCPMFlashAttention2, "sdpa": MiniCPMSdpaAttention, } class MiniCPMDecoderLayer(nn.Module): def __init__(self, config: MiniCPMConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = MiniCPMMLP(config) self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.scale_depth = config.scale_depth self.num_hidden_layers = config.num_hidden_layers def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states """ if "padding_mask" in kwargs: warnings.warn( "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" ) residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, **kwargs, ) hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers)) # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers)) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs MINICPM_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MiniCPMConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.", MINICPM_START_DOCSTRING, ) class MiniCPMPreTrainedModel(PreTrainedModel): config_class = MiniCPMConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MiniCPMDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() MINICPM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. Two formats are allowed: - a [`~cache_utils.Cache`] instance; - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy cache format. The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the legacy cache format will be returned. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.", MINICPM_START_DOCSTRING, ) class MiniCPMModel(MiniCPMPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`] Args: config: MiniCPMConfig """ def __init__(self, config: MiniCPMConfig): super().__init__(config) assert config._attn_implementation == "flash_attention_2", "Only flash_attention_2 is supported for hybrid attention" self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [MiniCPMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self._use_sdpa = config._attn_implementation == "sdpa" self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = True # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape[:2] elif inputs_embeds is not None: batch_size, seq_length = inputs_embeds.shape[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False past_key_values_length = 0 globals()['token_now'] +=1 if use_cache: # breakpoint() use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: raise ValueError( "必须使用新的past_key_values格式, 例如Cache类, 而不是旧的tuple格式." ) past_key_values = DynamicCache.from_legacy_cache(past_key_values) # 添加新的query_cache past_key_values_length = past_key_values.get_usable_length(seq_length) if past_key_values_length == 0: past_key_values = DynamicCacheQKV() else: assert isinstance(past_key_values, DynamicCacheQKV), "past_key_values must be a DynamicCacheQKV instance" if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0) if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb # if self._use_flash_attention_2: # # 2d mask is passed through the layers # # attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None # if attention_mask is None: # raise ValueError( # f"需要attention_mask for flash attention, but got {attention_mask}." # ) elif self._use_sdpa and not output_attentions: # output_attentions=True can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, ) else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) # embed positions hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) class MiniCPMForCausalLM(MiniCPMPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = MiniCPMModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> from transformers import AutoTokenizer, MiniCPMForCausalLM >>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.pretraining_tp > 1: lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] logits = torch.cat(logits, dim=-1) else: logits = self.lm_head(hidden_states / (self.config.hidden_size / self.config.dim_model_base)) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): if past_key_values is not None: if isinstance(past_key_values, Cache): cache_length = past_key_values.get_seq_length() past_length = past_key_values.seen_tokens max_cache_length = None # past_key_values.get_max_length() #! 换成max, 因为如果不是max的话,会裁剪attentio mask else: cache_length = past_length = past_key_values[0][0].shape[2] max_cache_length = None # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and cache_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @torch.inference_mode() def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user", max_length: int = 4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, logits_processor=None, **kwargs): if history is None: history = [] if logits_processor: gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, "temperature": temperature, "logits_processor": logits_processor, **kwargs} else: gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, "temperature": temperature, "logits_processor": logits_processor, **kwargs} history.append({"role": role, "content": query}) history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=False) inputs = tokenizer(history_str, return_tensors='pt').to(self.device) outputs = self.generate(**inputs, **gen_kwargs) outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1] response = tokenizer.decode(outputs) pattern = re.compile(r".*?(?=|<用户>)", re.DOTALL) matches = pattern.findall(response) if len(matches) > 0: response = matches[0] history.append({"role": "assistant", "content": response}) return response, history @add_start_docstrings( """ The MiniCPM Model transformer with a sequence classification head on top (linear layer). [`MiniCPMForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, MINICPM_START_DOCSTRING, ) class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = MiniCPMModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to( logits.device ) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )