File size: 2,745 Bytes
ce28923 e9dd5ad 84680ed e9dd5ad ee1241e e9dd5ad e77fe84 855ea33 28faf34 e9dd5ad 874f143 84680ed 855ea33 874f143 855ea33 874f143 ce28923 fe1df9a ce28923 84680ed ce28923 4ae02a3 84680ed ce28923 fe1df9a 4ae02a3 fe1df9a 4ae02a3 fe1df9a 70465c1 32c4d08 70465c1 32c4d08 70465c1 ce28923 28faf34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
# YuNet
YuNet is a light-weight, fast and accurate face detection model, which achieves 0.834(AP_easy), 0.824(AP_medium), 0.708(AP_hard) on the WIDER Face validation set.
Notes:
- Model source: [here](https://github.com/ShiqiYu/libfacedetection.train/blob/a61a428929148171b488f024b5d6774f93cdbc13/tasks/task1/onnx/yunet.onnx).
- This model can detect **faces of pixels between around 10x10 to 300x300** due to the training scheme.
- For details on training this model, please visit https://github.com/ShiqiYu/libfacedetection.train.
- This ONNX model has fixed input shape, but OpenCV DNN infers on the exact shape of input image. See https://github.com/opencv/opencv_zoo/issues/44 for more information.
- `face_detection_yunet_2023mar_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`.
- Paper source: [Yunet: A tiny millisecond-level face detector](https://link.springer.com/article/10.1007/s11633-023-1423-y).
Results of accuracy evaluation with [tools/eval](../../tools/eval).
| Models | Easy AP | Medium AP | Hard AP |
| ----------- | ------- | --------- | ------- |
| YuNet | 0.8844 | 0.8656 | 0.7503 |
| YuNet block | 0.8845 | 0.8652 | 0.7504 |
| YuNet quant | 0.8810 | 0.8629 | 0.7503 |
\*: 'quant' stands for 'quantized'.
\*\*: 'block' stands for 'blockwise quantized'.
## Demo
### Python
Run the following command to try the demo:
```shell
# detect on camera input
python demo.py
# detect on an image
python demo.py --input /path/to/image -v
# get help regarding various parameters
python demo.py --help
```
### C++
Install latest OpenCV and CMake >= 3.24.0 to get started with:
```shell
# A typical and default installation path of OpenCV is /usr/local
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
cmake --build build
# detect on camera input
./build/demo
# detect on an image
./build/demo -i=/path/to/image -v
# get help messages
./build/demo -h
```
### Example outputs


## License
All files in this directory are licensed under [MIT License](./LICENSE).
## Reference
- https://github.com/ShiqiYu/libfacedetection
- https://github.com/ShiqiYu/libfacedetection.train
## Citation
If you use `YuNet` in your work, please use the following BibTeX entries:
```
@article{wu2023yunet,
title={Yunet: A tiny millisecond-level face detector},
author={Wu, Wei and Peng, Hanyang and Yu, Shiqi},
journal={Machine Intelligence Research},
volume={20},
number={5},
pages={656--665},
year={2023},
publisher={Springer}
}
```
|