# This file is part of OpenCV Zoo project. # It is subject to the license terms in the LICENSE file found in the same directory. # # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved. # Third party copyrights are property of their respective owners. import argparse import numpy as np import cv2 as cv # Check OpenCV version opencv_python_version = lambda str_version: tuple(map(int, (str_version.split(".")))) assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \ "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python" from yunet import YuNet # Valid combinations of backends and targets backend_target_pairs = [ [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA], [cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16], [cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU], [cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU] ] parser = argparse.ArgumentParser(description='YuNet: A Fast and Accurate CNN-based Face Detector (https://github.com/ShiqiYu/libfacedetection).') parser.add_argument('--input', '-i', type=str, help='Usage: Set input to a certain image, omit if using camera.') parser.add_argument('--model', '-m', type=str, default='face_detection_yunet_2023mar.onnx', help="Usage: Set model type, defaults to 'face_detection_yunet_2023mar.onnx'.") parser.add_argument('--backend_target', '-bt', type=int, default=0, help='''Choose one of the backend-target pair to run this demo: {:d}: (default) OpenCV implementation + CPU, {:d}: CUDA + GPU (CUDA), {:d}: CUDA + GPU (CUDA FP16), {:d}: TIM-VX + NPU, {:d}: CANN + NPU '''.format(*[x for x in range(len(backend_target_pairs))])) parser.add_argument('--conf_threshold', type=float, default=0.9, help='Usage: Set the minimum needed confidence for the model to identify a face, defauts to 0.9. Smaller values may result in faster detection, but will limit accuracy. Filter out faces of confidence < conf_threshold.') parser.add_argument('--nms_threshold', type=float, default=0.3, help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3.') parser.add_argument('--top_k', type=int, default=5000, help='Usage: Keep top_k bounding boxes before NMS.') parser.add_argument('--save', '-s', action='store_true', help='Usage: Specify to save file with results (i.e. bounding box, confidence level). Invalid in case of camera input.') parser.add_argument('--vis', '-v', action='store_true', help='Usage: Specify to open a new window to show results. Invalid in case of camera input.') args = parser.parse_args() def visualize(image, results, box_color=(0, 255, 0), text_color=(0, 0, 255), fps=None): output = image.copy() landmark_color = [ (255, 0, 0), # right eye ( 0, 0, 255), # left eye ( 0, 255, 0), # nose tip (255, 0, 255), # right mouth corner ( 0, 255, 255) # left mouth corner ] if fps is not None: cv.putText(output, 'FPS: {:.2f}'.format(fps), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, text_color) for det in results: bbox = det[0:4].astype(np.int32) cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), box_color, 2) conf = det[-1] cv.putText(output, '{:.4f}'.format(conf), (bbox[0], bbox[1]+12), cv.FONT_HERSHEY_DUPLEX, 0.5, text_color) landmarks = det[4:14].astype(np.int32).reshape((5,2)) for idx, landmark in enumerate(landmarks): cv.circle(output, landmark, 2, landmark_color[idx], 2) return output if __name__ == '__main__': backend_id = backend_target_pairs[args.backend_target][0] target_id = backend_target_pairs[args.backend_target][1] # Instantiate YuNet model = YuNet(modelPath=args.model, inputSize=[320, 320], confThreshold=args.conf_threshold, nmsThreshold=args.nms_threshold, topK=args.top_k, backendId=backend_id, targetId=target_id) # If input is an image if args.input is not None: image = cv.imread(args.input) h, w, _ = image.shape # Inference model.setInputSize([w, h]) results = model.infer(image) # Print results print('{} faces detected.'.format(results.shape[0])) for idx, det in enumerate(results): print('{}: {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f}'.format( idx, *det[:-1]) ) # Draw results on the input image image = visualize(image, results) # Save results if save is true if args.save: print('Resutls saved to result.jpg\n') cv.imwrite('result.jpg', image) # Visualize results in a new window if args.vis: cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) cv.imshow(args.input, image) cv.waitKey(0) else: # Omit input to call default camera deviceId = 0 cap = cv.VideoCapture(deviceId) w = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) h = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) model.setInputSize([w, h]) tm = cv.TickMeter() while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: print('No frames grabbed!') break # Inference tm.start() results = model.infer(frame) # results is a tuple tm.stop() # Draw results on the input image frame = visualize(frame, results, fps=tm.getFPS()) # Visualize results in a new Window cv.imshow('YuNet Demo', frame) tm.reset()