File size: 2,745 Bytes
42310ef
 
 
 
83bb178
e7d94f5
83bb178
92ff628
83bb178
62917b7
85a27e0
bd48bb3
83bb178
60ba673
 
e7d94f5
 
85a27e0
 
 
 
60ba673
 
85a27e0
 
60ba673
42310ef
 
84bf331
 
42310ef
e7d94f5
42310ef
 
 
 
af3dd88
e7d94f5
 
 
42310ef
 
84bf331
 
 
 
 
 
af3dd88
84bf331
 
 
 
 
af3dd88
84bf331
 
 
 
237ca2e
 
69ad792
237ca2e
69ad792
237ca2e
42310ef
 
 
 
 
 
 
 
bd48bb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# YuNet

YuNet is a light-weight, fast and accurate face detection model, which achieves 0.834(AP_easy), 0.824(AP_medium), 0.708(AP_hard) on the WIDER Face validation set.

Notes:

- Model source: [here](https://github.com/ShiqiYu/libfacedetection.train/blob/a61a428929148171b488f024b5d6774f93cdbc13/tasks/task1/onnx/yunet.onnx).
- This model can detect **faces of pixels between around 10x10 to 300x300** due to the training scheme.
- For details on training this model, please visit https://github.com/ShiqiYu/libfacedetection.train.
- This ONNX model has fixed input shape, but OpenCV DNN infers on the exact shape of input image. See https://github.com/opencv/opencv_zoo/issues/44 for more information.
- `face_detection_yunet_2023mar_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`.
- Paper source: [Yunet: A tiny millisecond-level face detector](https://link.springer.com/article/10.1007/s11633-023-1423-y).

Results of accuracy evaluation with [tools/eval](../../tools/eval).

| Models      | Easy AP | Medium AP | Hard AP |
| ----------- | ------- | --------- | ------- |
| YuNet       | 0.8844  | 0.8656    | 0.7503  |
| YuNet block | 0.8845  | 0.8652    | 0.7504  |
| YuNet quant | 0.8810  | 0.8629    | 0.7503  |


\*: 'quant' stands for 'quantized'.
\*\*: 'block' stands for 'blockwise quantized'.


## Demo

### Python

Run the following command to try the demo:

```shell
# detect on camera input
python demo.py
# detect on an image
python demo.py --input /path/to/image -v

# get help regarding various parameters
python demo.py --help
```

### C++

Install latest OpenCV and CMake >= 3.24.0 to get started with:

```shell
# A typical and default installation path of OpenCV is /usr/local
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
cmake --build build

# detect on camera input
./build/demo
# detect on an image
./build/demo -i=/path/to/image -v
# get help messages
./build/demo -h
```

### Example outputs

![webcam demo](./example_outputs/yunet_demo.gif)

![largest selfie](./example_outputs/largest_selfie.jpg)

## License

All files in this directory are licensed under [MIT License](./LICENSE).

## Reference

- https://github.com/ShiqiYu/libfacedetection
- https://github.com/ShiqiYu/libfacedetection.train

## Citation

If you use `YuNet` in your work, please use the following BibTeX entries:

```
@article{wu2023yunet,
  title={Yunet: A tiny millisecond-level face detector},
  author={Wu, Wei and Peng, Hanyang and Yu, Shiqi},
  journal={Machine Intelligence Research},
  volume={20},
  number={5},
  pages={656--665},
  year={2023},
  publisher={Springer}
}
```