File size: 2,745 Bytes
42310ef 83bb178 e7d94f5 83bb178 92ff628 83bb178 62917b7 85a27e0 bd48bb3 83bb178 60ba673 e7d94f5 85a27e0 60ba673 85a27e0 60ba673 42310ef 84bf331 42310ef e7d94f5 42310ef af3dd88 e7d94f5 42310ef 84bf331 af3dd88 84bf331 af3dd88 84bf331 237ca2e 69ad792 237ca2e 69ad792 237ca2e 42310ef bd48bb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
# YuNet
YuNet is a light-weight, fast and accurate face detection model, which achieves 0.834(AP_easy), 0.824(AP_medium), 0.708(AP_hard) on the WIDER Face validation set.
Notes:
- Model source: [here](https://github.com/ShiqiYu/libfacedetection.train/blob/a61a428929148171b488f024b5d6774f93cdbc13/tasks/task1/onnx/yunet.onnx).
- This model can detect **faces of pixels between around 10x10 to 300x300** due to the training scheme.
- For details on training this model, please visit https://github.com/ShiqiYu/libfacedetection.train.
- This ONNX model has fixed input shape, but OpenCV DNN infers on the exact shape of input image. See https://github.com/opencv/opencv_zoo/issues/44 for more information.
- `face_detection_yunet_2023mar_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`.
- Paper source: [Yunet: A tiny millisecond-level face detector](https://link.springer.com/article/10.1007/s11633-023-1423-y).
Results of accuracy evaluation with [tools/eval](../../tools/eval).
| Models | Easy AP | Medium AP | Hard AP |
| ----------- | ------- | --------- | ------- |
| YuNet | 0.8844 | 0.8656 | 0.7503 |
| YuNet block | 0.8845 | 0.8652 | 0.7504 |
| YuNet quant | 0.8810 | 0.8629 | 0.7503 |
\*: 'quant' stands for 'quantized'.
\*\*: 'block' stands for 'blockwise quantized'.
## Demo
### Python
Run the following command to try the demo:
```shell
# detect on camera input
python demo.py
# detect on an image
python demo.py --input /path/to/image -v
# get help regarding various parameters
python demo.py --help
```
### C++
Install latest OpenCV and CMake >= 3.24.0 to get started with:
```shell
# A typical and default installation path of OpenCV is /usr/local
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
cmake --build build
# detect on camera input
./build/demo
# detect on an image
./build/demo -i=/path/to/image -v
# get help messages
./build/demo -h
```
### Example outputs


## License
All files in this directory are licensed under [MIT License](./LICENSE).
## Reference
- https://github.com/ShiqiYu/libfacedetection
- https://github.com/ShiqiYu/libfacedetection.train
## Citation
If you use `YuNet` in your work, please use the following BibTeX entries:
```
@article{wu2023yunet,
title={Yunet: A tiny millisecond-level face detector},
author={Wu, Wei and Peng, Hanyang and Yu, Shiqi},
journal={Machine Intelligence Research},
volume={20},
number={5},
pages={656--665},
year={2023},
publisher={Springer}
}
```
|