File size: 5,693 Bytes
4c44ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# This file is part of OpenCV Zoo project.
# It is subject to the license terms in the LICENSE file found in the same directory.


import sys
import argparse

import numpy as np
import cv2 as cv

# Check OpenCV version
opencv_python_version = lambda str_version: tuple(map(int, (str_version.split("."))))
assert opencv_python_version(cv.__version__) >= opencv_python_version("4.10.0"), \
       "Please install latest opencv-python for benchmark: python3 -m pip install --upgrade opencv-python"

sys.path.append('../face_detection_yunet')
from yunet import YuNet

from ediffiqa import eDifFIQA

# Valid combinations of backends and targets
backend_target_pairs = [
    [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA],
    [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA_FP16],
    [cv.dnn.DNN_BACKEND_TIMVX,  cv.dnn.DNN_TARGET_NPU],
    [cv.dnn.DNN_BACKEND_CANN,   cv.dnn.DNN_TARGET_NPU]
]

REFERENCE_FACIAL_POINTS = [
    [38.2946  , 51.6963  ],
    [73.5318  , 51.5014  ],
    [56.0252  , 71.7366  ],
    [41.5493  , 92.3655  ],
    [70.729904, 92.2041  ]
]

parser = argparse.ArgumentParser(description='eDifFIQA: Towards Efficient Face Image Quality Assessment based on Denoising Diffusion Probabilistic Models (https://github.com/LSIbabnikz/eDifFIQA).')
parser.add_argument('--input', '-i', type=str, default='./sample_image.jpg',
                    help='Usage: Set input to a certain image, defaults to "./sample_image.jpg".')
parser.add_argument('--backend_target', '-bt', type=int, default=0,
                    help='''Choose one of the backend-target pair to run this demo:
                        {:d}: (default) OpenCV implementation + CPU,
                        {:d}: CUDA + GPU (CUDA),
                        {:d}: CUDA + GPU (CUDA FP16),
                        {:d}: TIM-VX + NPU,
                        {:d}: CANN + NPU
                    '''.format(*[x for x in range(len(backend_target_pairs))]))

ediffiqa_parser = parser.add_argument_group("eDifFIQA", " Parameters of eDifFIQA - For face image quality assessment ")
ediffiqa_parser.add_argument('--model_q', '-mq', type=str, default='ediffiqa_tiny_jun2024.onnx',
                    help="Usage: Set model type, defaults to 'ediffiqa_tiny_jun2024.onnx'.")

yunet_parser = parser.add_argument_group("YuNet", " Parameters of YuNet - For face detection ")
yunet_parser.add_argument('--model_d', '-md', type=str, default='../face_detection_yunet/face_detection_yunet_2023mar.onnx',
                    help="Usage: Set model type, defaults to '../face_detection_yunet/face_detection_yunet_2023mar.onnx'.")
yunet_parser.add_argument('--conf_threshold', type=float, default=0.9,
                    help='Usage: Set the minimum needed confidence for the model to identify a face, defauts to 0.9. Smaller values may result in faster detection, but will limit accuracy. Filter out faces of confidence < conf_threshold.')
yunet_parser.add_argument('--nms_threshold', type=float, default=0.3,
                    help='Usage: Suppress bounding boxes of iou >= nms_threshold. Default = 0.3.')
yunet_parser.add_argument('--top_k', type=int, default=5000,
                    help='Usage: Keep top_k bounding boxes before NMS.')
args = parser.parse_args()


def visualize(image, results):
    output = image.copy()
    cv.putText(output, f"{results:.3f}", (0, 20), cv.FONT_HERSHEY_DUPLEX, .8, (0, 0, 255))

    return output


def align_image(image, detection_data):
    """ Performs face alignment on given image using the provided face landmarks (keypoints)

    Args:
        image (np.array): Unaligned face image
        detection_data (np.array): Detection data provided by YuNet 

    Returns:
        np.array: Aligned image
    """

    reference_pts = REFERENCE_FACIAL_POINTS

    ref_pts = np.float32(reference_pts)
    ref_pts_shp = ref_pts.shape

    if ref_pts_shp[0] == 2:
        ref_pts = ref_pts.T

    # Get source keypoints from YuNet detection data
    src_pts = np.float32(detection_data[0][4:-1]).reshape(5,2)
    src_pts_shp = src_pts.shape

    if src_pts_shp[0] == 2:
        src_pts = src_pts.T

    tfm, _ = cv.estimateAffinePartial2D(src_pts, ref_pts, method=cv.LMEDS)

    face_img = cv.warpAffine(image, tfm, (112, 112))

    return face_img


if __name__ == '__main__':

    backend_id = backend_target_pairs[args.backend_target][0]
    target_id = backend_target_pairs[args.backend_target][1]

    # Instantiate eDifFIQA(T) (quality assesment)
    model_quality = eDifFIQA(
        modelPath=args.model_q,
        inputSize=[112, 112],
    )
    model_quality.setBackendAndTarget(
        backendId=backend_id,
        targetId=target_id
    )

    # Instantiate YuNet (face detection)
    model_detect = YuNet(
        modelPath=args.model_d,
        inputSize=[320, 320],
        confThreshold=args.conf_threshold,
        nmsThreshold=args.nms_threshold,
        topK=args.top_k,
        backendId=backend_id,
        targetId=target_id
    )

    # If input is an image
    image = cv.imread(args.input)
    h, w, _ = image.shape

    # Face Detection
    model_detect.setInputSize([w, h])
    results_detect = model_detect.infer(image)

    assert results_detect.size != 0, f" Face could not be detected in: {args.input}. "

    # Face Alignment
    aligned_image = align_image(image, results_detect)

    # Quality Assesment 
    quality = model_quality.infer(aligned_image)
    quality = np.squeeze(quality).item()

    viz_image = visualize(aligned_image, quality)

    print(f" Quality score of {args.input}: {quality:.3f} ")

    print(f" Saving visualization to results.jpg. ")
    cv.imwrite('results.jpg', viz_image)